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In this paper, we propose a novel, analytically tractable, one-factor stochastic model
for the dynamics of credit default swap (CDS) spreads and their returns, which we
refer to as the spread-return mean-reverting (SRMR) model. The SRMR model can be
seen as a hybrid of the Black–Karasinski model on spreads and the Ornstein–Uhlenbeck
model on spread returns, and is able to capture empirically observed properties of CDS
spreads and returns, including spread mean-reversion, heavy tails of the return distri-
bution, and return autocorrelations. Although developed for modeling CDS spreads, the
SRMR model has applications for many other stochastic processes with similar empirical
properties, including more general rate processes.

Keywords: Credit default swaps; credit risk; risk management; return autocorrelation;
heavy tails; model fitting.

1. Introduction

Much of the literature on portfolio credit risk has been concentrated on building
realistic models of default risk and correlation among defaults (O’Kane 2008). This
was, in part, due to the popularity enjoyed by default correlation products, such
as basket default swaps and collateralized debt obligations (CDOs), in the years
immediately preceding the 2008 subprime crisis. Nonetheless, investors in bonds,
loans, credit default swaps (CDS) and other simple credit derivatives are exposed

1450017-1

In
t. 

J.
 T

he
or

. A
pp

l. 
Fi

na
n.

 2
01

4.
17

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 D
r.

 B
re

nd
an

 O
'D

on
og

hu
e 

on
 0

6/
10

/1
4.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

http://dx.doi.org/10.1142/S0219024914500174


May 7, 2014 14:2 WSPC/S0219-0249 104-IJTAF SPI-J071 1450017

B. O’Donoghue et al.

to price fluctuations even in the absence of defaults. This is because changes in
market perceptions of the credit worthiness of an obligor affect the risk premium
demanded by investors, and therefore the obligor’s credit spread.

Successful management of spread risk, either in derivatives pricing, portfolio
optimization or Value at Risk (VaR) applications, relies on a realistic description
of the credit spread dynamics. However, most of the models for credit spreads
proposed in the past, like the celebrated Cox–Ingersoll–Ross (CIR) model (Cox
et al. 1985 and Duffie & Singleton 1999) and its generalizations (Brigo & Alfonsi
2005), prioritized analytic tractability over an accurate description of the empirical
properties of credit spreads. A notable exception is the recent work of Cont &
Kan (2011) which undertook a systematic study of the empirical properties of CDS
spreads. This work highlighted several important properties of the dynamics of CDS
spreads, including stationarity of returns, positive autocorrelations, and two-sided
heavy tailed distributions. In order to fit these properties, these authors proposed
a discrete-time AR(1)-GARCH model.

In this paper, we continue this line of research and propose a simple and ana-
lytically tractable model that is able to capture the principal features of the CDS
spread dynamics observed in practice. We refer to this model as the spread-return
mean-reverting (SRMR) model. The SRMR model can be seen as a hybrid of the
Black–Karasinski (BK) model for spreads and the Ornstein–Uhlenbeck (OU) model
for spread returns; it shares their analytical tractability while overcoming some of
their weaknesses.

There are many competing frameworks in the literature that can be used to
model spreads. Most of these were first used to model interest rates but have since
been applied, in the literature or in practice, to CDS spreads. The first important
model on interest rates is the Vasicek model (1977), which is an OU model for the
instantaneous rate. If the parameters that define the model are allowed to vary
with time then the model is sometimes referred to as the Hull–White model (1990)
or the extended Vasicek model. Ho & Lee (1986) modeled interest rates as a time
varying drift-diffusion process. Rendleman & Bartter (1980) proposed a model on
interest rates using a geometric Brownian motion process. The CIR (Cox et al. 1985,
Duffie & Singleton 1999, and Brigo & Alfonsi 2005) model, which is popular among
practitioners, is closely related to the Vasicek model family. The difference between
the CIR model and others is that the volatility depends on the square-root of the
rate, which precludes negative interest rates. Black & Karasinski (1991), proposed
a model on the log-rates, which can be interpreted as a log-normal application of
the Hull–White model. For (much) more details on these and other models see, e.g.,
Brigo & Mercurio (2006), Hull (2012), and James & Webber (2000).

Throughout the paper we shall denote the CDS spread at time t as st, and the
(log-)return of the spread at time t as rt, i.e. rt = d log(st)/dt in a continuous time
setting and rt = log(st/st−1) in a discrete-time setting. We use log-returns so as
to preclude the possibility of negative spreads, as we shall see. We consider daily
returns, so throughout the paper t will have units of days.
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1.1. Outline

The paper is structured as follows. In Sec. 2, we introduce the SRMR model. In
Sec. 3, we derive closed-form expressions for the value of the spread and return at
any time, under the model. In Sec. 4, we discuss the connections of the SRMR model
to other well-known models in the literature. In Sec. 5, we discuss ways of fitting the
parameters in the SRMR model to data. In Sec. 6, we present a real-world example
of using the model to calculate VaR.

2. The SRMR Model

Cont & Kan (2011) show that modeling CDS spreads directly does not capture the
full statistical properties of the empirically observed process. Instead they propose
modeling the spread returns. Here, we continue this line of research and we propose a
simple analytically tractable continuous time model for spread returns that captures
many of the empirical properties of both spreads and returns. The starting point
is a simplified continuous time, diffusive version of the model proposed in Cont &
Kan (2011), namely an OU process on returns of the form

drt = (γ − αrt)dt + σdWt, (1)

where γ, α and σ are constant parameters and Wt is a standard Wiener process.
While this model is able to capture autocorrelation of returns, it results in undesir-
able credit spread dynamics. As illustrated in Fig. 1 and shown analytically below,
the process (1) is characterized by a variance that is unbounded with time. This is
because there is nothing in the model specification that forces the spread to revert
to a long term mean. In order to address this problem, we modify the process in
Eq. (1) as follows:

drt =
(

γ − (α + β)rt − αβ

∫ t

0

rτdτ

)
dt + σdWt, (2)

where again γ, α, β and σ are constant parameters and Wt is a standard Wiener
process. We refer to model in Eq. (2) as the SRMR model. The SRMR model is an
extension of the OU model on returns (1) that incorporates a mean-reversion term
on the integral of the log-return, which is simply the change in the log-rate from
time t = 0, since by our definition of return we have

st = s0 exp
(∫ t

0

rt

)
.

This ensures that the spreads are always nonnegative under the model. Thus both
the spreads and returns are explicitly taken into account by the model.

The SRMR model has a seemingly complicated form; the return at time t

depends on the entire history of the return from 0 to t through the integral term.
However, the SRMR model is essentially just as tractable as the BK or OU models.
First, if we consider the state of the process to be yt = (rt,

∫ t

0
rτdτ)T ∈ R2, then
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Fig. 1. A sample path for the spread as implied by the OU model for the log-returns, equation (1),
illustrating unbounded variance.

we can write a stochastic differential equation governing yt that has the Markov
property. Indeed, we can rewrite the process as

dyt = (Γ − Ayt)dt + ΣdWt,

where

Γ =

[
γ

0

]
, A =

[
α + β αβ

−1 0

]
, Σ =

[
σ

0

]
(3)

and the initial condition reads y0 = (r0, 0)T . Thus the SRMR model is a two-
dimensional (but one-factor) OU process (Gardiner 2009) with a very particular
choice of parameters that give rise to certain desirable properties. Consequently,
the process has a tractable closed-form expression for the rate at any time, which
we derive below.

3. Closed-Form Expressions

If α, β > 0 and α �= β then we have

yt = e−Aty0 + (I − e−At)A−1Γ +
∫ t

0

eA(τ−t)ΣdWτ

(an analogous formula can be derived for the case where α = β). More explicitly,
the evolution of the return rt and the change in the log-spread log(st/s0) =

∫ t

0
rτdτ
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are given by

rt = γ(e−αt − e−βt)/(β − α) + r0(βe−βt − αe−αt)/(β − α)

+ σ

∫ t

0

((βeβ(τ−t) − αeα(τ−t))/(β − α))dWτ

and∫ t

0

rτdτ = (γ/αβ)(1 − (βe−αt − αe−βt)/(β − α)) + r0(e−αt − e−βt)/(β − α)

+ σ

∫ t

0

((eα(τ−t) − eβ(τ−t))/(β − α))dWτ . (4)

The asymptotic behavior of the mean is given by

E(yt) → A−1Γ =

[
0

γ/αβ

]
,

confirming that spreads are mean reverting. The variance is given by

var(yt) = σ2/2




1 − f(t)
α + β

g(t)
(β − α)2

g(t)
(β − α)2

1 − p(t)
αβ(α + β)


 ,

where

f(t) =
(βe−βt − αe−αt)2 + αβ(e−αt − e−βt)2

(β − α)2
,

p(t) =
(αe−βt − βe−αt)2 + αβ(e−αt − e−βt)2

(β − α)2

and

g(t) = (e−αt − e−βt)2.

Since f(t), p(t), g(t) → 0 the variances of both the spread and return are bounded
for α, β > 0. However, this is lacking in the OU model for returns (1): if we take
β = 0 we recover the process on returns described by Eq. (1), and if we take the
limit of the variance as β → 0, we obtain

var
(∫ t

0

rsds

)
=

σ2

α2

(
t − 3

2α
+

4e−αt − e−2αt

2α

)
,

which grows with time, as illustrated in Fig. 1.

4. Connection to other Processes

It is clear that setting β = 0 in the SRMR model (2) yields the OU model on returns
(1). Performing an eigenvalue decomposition on the matrix A in Eq. (3) allows
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us to decompose the above system into two one-dimensional stochastic processes
corresponding to the eigenstates of the system. This implies that the process rt can
be written (for β �= α)

rt = (βbt − αat)/(β − α),

where

dat = (γ − αat)dt + σdWt,

dbt = (γ − βbt)dt + σdWt

and where r0 = b0 = a0, i.e. the process (2) can be interpreted as the weighted
difference of two standard OU processes.

We can also recover the BK model (Black & Karasinki 1991) as a special case
of the SRMR model. By fixing α > 0, letting β → ∞ and varying γ, σ so that
γ/αβ ≡ µ̂ and σ/(β − α) ≡ σ̂, where µ̂ and σ̂ are some constants, Eq. (4) gives∫ t

0

rsds = µ̂(1 − e−αt) + σ̂

∫ t

0

eα(τ−t)dWτ ,

and therefore
∫ t

0
rsds must obey the process

d

(∫ t

0

rsds

)
= α

(
µ̂ −

∫ t

0

rsds

)
dt + σ̂dWt.

If we define Xt = log st =
∫ t

0 rsds + log s0, then the following process describes the
evolution of Xt:

dXt = α(µ̂ − Xt + X0)dt + σ̂dWt

= α(µ − Xt)dt + σ̂dWt

with µ = µ̂ + X0, which is precisely the BK model.
In summary, the BK model for spreads and the OU model on returns are in

fact limiting cases of the SRMR model (2). Therefore, we may expect that for
intermediate values of α and β we would obtain a hybrid between the BK model and
OU model for returns and spreads, maintaining the desirable analytic tractability
of both and eliminating some of the weaknesses.

5. Parameter Estimation

In this section, we detail how to fit parameters to the SRMR model given the
observation data. The variant we consider is the SRMR model with jumps:

drt =
(

γ − (α + β)rt − αβ

∫ t

0

rτdτ

)
dt + σdWt + dZt, (5)

where Zt is an independent compound Poisson process with rate λ and some jump-
size distribution that we make no assumptions on a priori. For more discussion
on the use of jumps to model CDS spreads see, e.g., Madan & Schoutens (2008)
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and Martin (2009). Due to the assumed independence of the jump and diffusive
component the moment generating function of the process is still available in closed
form, thus making the implementation of the model in Monte Carlo or multinomial
trees straightforward. The incorporation of jumps allows the model to better fit the
heavy-tails of the data, as observed in Cont & Kan (2011).

The task of fitting the parameters of the process (5) to observed data can be
cast as a convex optimization problem; for alternative approaches for fitting Lévy
processes to empirical data see, e.g., Barndorff-Nielsen (1997), Barndorff-Nielsen &
Shephard (2003), and Schoutens (2003). Given N samples of the returns at times
ti, i = 1, . . . , N , with time difference between successive samples given by ∆t, the
model (5) in discrete time is written

∆ri =


γ − (α + β)ri − αβ

i∑
j=0

rj∆t


∆t + σwi + zi, (6)

where ri is the return at time ti, wi ∼ N (0, ∆t) is the diffusive component of the
innovation at time ti and zi is the jump sample at time ti.

Equation (6) can be written in a simpler form if we make the following substi-
tutions; let xi = ∆ri,

yi =


1, ri,

i∑
j=0

rj∆t




T

and

θ = (γ∆t,−(α + β)∆t,−αβ∆t)T .

Now we can rewrite (6) as

xi = θT yi + σwi + zi. (7)

We assume that λ∆t is small, and thus only one jump is likely to occur in each ∆t

interval, and the probability of observing a jump in an interval is approximately
λ∆t. Since we make no assumptions on the jump-size distribution we take the
following uninformative prior on zi:

p(zi) =
{

λ∆t if zi �= 0,
1 − λ∆t if zi = 0,

or equivalently

p(zi) ∝ exp(−cIzi �=0(zi)),

where c = −log((λ∆t)/(1 − λ∆t)) and

Izi �=0(zi) =
{

1 if zi �= 0,
0 if zi = 0,

is the indicator function for nonzero zi. From (7) we have that wi = (xi − θT yi −
zi)/σ ∼ N (0, ∆t), and therefore the likelihood of observing data sample i is
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given by

p(xi | θ, yi, zi) ∝ exp(−(xi − θT yi − zi)2/2σ2∆t).

Each sample, xi, can be decomposed into the deterministic drift component θT yi,
the diffusion component wi and the jump component zi, in a maximum a posteriori
sense given our prior on zi. The problem of fitting the parameters to the data can
be written in this notation as

maximize
N∏

i=1

p(xi | θ, yi, zi)p(zi).

Taking the negative logarithm yields

minimize ‖x − Y T θ − z‖2
2 + µ

N∑
i=1

Izi �=0(zi), (8)

where Y = (y1, y2, . . . , yN) is the matrix of data samples stacked columnwise,
µ = 2σ2c∆t, and ‖·‖2 denotes the Euclidean norm. The variables in the above
optimization problem are θ ∈ R3 and z ∈ RN (x ∈ RN and Y ∈ R3×N are known
data). Problem (8) is hard to solve in general, due to the nonconvexity of the term
involving the indicator function. One common approach to approximately solve this
problem is to replace this term with the �1 norm, which is a good approximation in
many cases, see, e.g., Tibshirani (1994), Candès et al. (2006), Donoho (2006), and
Candès & Wakin (2008). The �1 norm is often referred to as a sparsity promoting
penalty function, as the resulting vector will typically be sparse (which is what we
expect for a jump process). This simplification yields

minimize‖x − Y T θ − z‖2
2 + µ‖z‖1. (9)

Problem (9) is jointly convex in θ and z and thus can be solved efficiently using
modern methods, (Nesterov & Nemirovsky 1994, Wright 1997, Sturm 1999, Toh
et al. 1999, Boyd & Vandenberghe 2004, Grant & Boyd 2011, and O’Donoghue
et al. 2013). The parameter µ ∈ R+ must be chosen in advance, however it can be
selected using a back-testing or cross-validation procedure.

Let θ� and z� be the minimizers of the optimization problem (9). From θ� we
can extract estimates of γ, α and β, the parameters that specify the SRMR model
(5). The nonzero entries of z� are the jump locations, which can be used to estimate
the jump rate λ and the jump-size distribution. Finally, since (xi − θT yi − zi) ∼
N (0, σ2∆t), the standard deviation of (x − Y T θ − z)/

√
∆t yields an estimate for

the diffusion noise level σ.
Figure 2 shows the 5Y CDS spread and return time series for Pfizer Inc. from

February 2008 to September 2010, in this case ∆t was one day. Figure 3 shows the
results of the maximum a posteriori decomposition; the top trace is the deterministic
drift, the middle trace is the diffusion and the bottom trace are the jumps.
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Fig. 2. 5Y CDS spread and return time series for Pfizer Inc. for the period February 2008 to June
2010.
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Fig. 3. Return time series for Pfizer Inc. of Fig. 2 decomposed from top to bottom into drift,
diffusion and jump processes.
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5.1. Comparison with the empirical properties of CDS spreads

After fitting the parameters of the SRMR model (2) to the historical time series
as described above, we can simulate the process and compare to the empirical
returns. Figure 4 shows the return autocorrelations generated by the SRMR model
for the 5Y CDS spreads of Southwest Airlines Co. The comparison with the partial
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Fig. 4. The partial autocorrelation function estimated from samples generated by the SRMR model
fit to Southwest 5Y CDS data for the period February 2008 to August 2011.
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Fig. 5. The true partial autocorrelation function for the 5Y CDS spread returns of Southwest
Airlines Co. for the period February 2008 to August 2011.
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Fig. 6. Q–Q plot of real versus simulated return innovations, for the 5Y CDS spreads of IBM
during the period September 2008 to August 2011.

autocorrelation function of Fig. 5 indicate that the SRMR model is able to reproduce
the same structure of return autocorrelations observed empirically. The BK model
on spreads is unable to capture this autocorrelation on returns.

Figure 6 shows the Q–Q-plot of real return data and the simulated return data
from the SRMR model with Laplace-distributed jump sizes for 5YR CDS spreads of
IBM. The goodness-of-fit is evidenced by the straight line fit with slope of approx-
imately one. This suggests that the distribution of returns implied by the model is
very close to what we observe in the empirical data.

6. An Example Application: VaR

An accurate description of the statistical properties of CDS spreads is important for
obtaining meaningful risk quantification, e.g., in VaR measures (Alexander 2009).
To test the SRMR model we selected 20 5YR CDS spread series and fit three mod-
els to each name using empirical data: the BK model, the BK model with jumps
(BK + J) and the SRMR model with jumps (SRMR + J); we used a Laplace distri-
bution to model the jump sizes in all cases. We then created six portfolios of those
same 20 names; one portfolio was all long positions (protection buyer), one all short
(protection seller) and four were of randomly mixed long-short positions. We sim-
ulated the spreads using the calibrated models and we computed the present value
of each portfolio implied by the simulated spreads using the ISDA CDS standard
model (O’Kane 2008). Using the obtained time series of 1-day P&Ls we estimated
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Table 1. Proportion of days each portfolio experienced losses
exceeding the 95% VaR threshold during the period February
2008 to August 2011.

BK (%) BK + J (%) SRMR + J (%)

Long 20 3.5 8.1 6.3
Short 20 3.3 6.2 5.4
Random mixed A 1.6 2.4 3.3
Random mixed B 4.0 3.2 4.3
Random mixed C 4.1 5.1 5.2
Random mixed D 1.9 7.1 3.2
Average 3.1 5.4 4.7
Std. error 2.2 2.1 1.2

the 95% 1-day VaR threshold (Alexander 2009) for each portfolio under each model,
and compared the results obtained to the historical data. In Table 1, we show the
fraction of the time that the portfolios had real daily losses greater than the esti-
mated 95% VaR threshold (a perfect model with infinite data would have 5% in
every row). Note that although the portfolios are not real, we are using real data
to both fit the models and estimate their performance.

As shown in Table 1, the BK model slightly overestimates the risk, as the vari-
ance of the diffusion fit is very large in order to ‘explain’ the jumps. Adding jumps
to BK improves the performance somewhat, resulting in a better average and a
slightly smaller standard error. However, the SRMR model outperforms both other
models, having an average closer to 5% and a significantly smaller standard error.

7. Conclusions

An accurate description of credit spreads dynamics is essential for the effective
risk management of portfolios of credit derivatives. In this paper, we developed
a continuous-time, one-factor stochastic model for the dynamics of CDS spreads
and their returns, dubbed the SRMR model. The SRMR model can be seen as a
hybrid of the BK model for spreads and the OU model for spread returns, and is
able to capture the desirable properties of both, while overcoming many of their
respective weaknesses. As such the SRMR model is better able to capture important
statistical properties that we observe in real data. These include nonnegativity
of spreads, spread and return mean-reversion, bounded variance with time, heavy
tails of the return distribution and return autocorrelation. Although we presented
an application in the context of VaR calculation for CDS portfolios, the proposed
model is also suitable for other applications, including portfolio optimization and
derivative pricing.

Finally, although we focused on the use of the SRMR model solely in the context
of modeling CDS spreads and returns, we note that it has applications in other areas,
in particular for interest rate modeling.
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