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OPERATOR SPLITTING FOR A HOMOGENEOUS EMBEDDING OF
THE LINEAR COMPLEMENTARITY PROBLEM\ast 
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Abstract. We present a first-order quadratic cone programming algorithm that can scale to
very large problem sizes and produce modest accuracy solutions quickly. Our algorithm returns
primal-dual optimal solutions when available or certificates of infeasibility otherwise. It is derived
by applying Douglas--Rachford splitting to a homogeneous embedding of the linear complementarity
problem, which is a general set membership problem that includes quadratic cone programs (QCPs)
as a special case. Each iteration of our procedure requires projecting onto a convex cone and solving
a linear system with a fixed coefficient matrix. If a sequence of related problems are solved, then
the procedure can easily be warm-started and make use of factorization caching of the linear system.
We demonstrate on a range of public and synthetic datasets that for feasible problems our approach
tends to be somewhat faster than applying operator splitting directly to the QCP, and in cases of
infeasibility our approach can be significantly faster than alternative approaches based on diverging
iterates. The algorithm we describe has been implemented in C and is available open-source in the
solver SCS v3.0.
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1. Introduction. The goal in a linear complementarity problem (LCP) is to find
a point in a convex cone that satisfies a complementarity condition [15, 22, 49]. In
this paper we apply Douglas--Rachford (DR) splitting to a homogeneous embedding
of the monotone LCP that encodes both the feasibility and infeasibility conditions
of the original problem. Although the algorithm we develop is for general monotone
LCPs, in this manuscript we focus on convex quadratic cone programs (QCPs), which
are a special case. QCPs are a type of convex optimization problem where the goal
is to minimize a quadratic objective subject to a conic constraint.

The recent SCS (splitting conic solver) algorithm is a first-order optimization
procedure that can solve large convex linear cone problems to modest accuracy quickly
[56, 57]. It is based on applying the alternating directions method of multipliers
(ADMM) to a homogeneous self-dual embedding of the problem [9, 60, 79]. However,
it cannot handle quadratic objectives directly, relying instead on reductions to second-
order cone constraints. This reduction is inefficient in three ways. First, it is costly
to perform the necessary matrix factorization required for conversion; second, the
factorization may destroy any favorable sparsity in the original data; and third, it
appears that operator splitting methods like ADMM are better able to exploit the
strong convexity of a quadratic objective when used directly, rather than as a second-
order cone [28, 48]. This limitation, and the myriad real-world applications with
quadratic objectives, has inspired the development of first-order ADMM based solvers
that tackle the quadratic objective directly [59, 68, 26]. However, solvers not based on
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a homogeneous embedding must rely on an alternative procedure based on diverging
iterates to generate certificates of infeasibility if the problem does not have a solution
[5, 38, 33, 6, 4, 3]. This procedure tends to be slower and less robust in practice [45].
In this paper we derive an algorithm that enjoys both properties---direct handling of
quadratic objectives and efficient generation of infeasibility certificates.

Building on the homogeneous self-dual model of Goldman and Tucker [29], a series
of papers developed homogeneous embeddings for the LCP [77, 76] and the more
general monotone complementarity problem (MCP) [2]. Here we use the embedding
of Andersen and Ye [2] applied to a monotone LCP. We show that the operator
corresponding to the embedding is monotone, but not maximal, a property required
for convergence of most operator splitting techniques. We derive a natural maximal
extension of the operator which defines the final embedding. The resulting embedded
problem can be expressed as finding a zero of the sum of two maximal monotone
operators, to which we can apply standard operator splitting methods [7, 65].

We focus our attention on DR splitting due to its general convergence guaran-
tees and good empirical performance [20, 37], though there are many alternative
approaches [72, 61]. DR splitting is equivalent to ADMM under a particular change
of variables [25, 23] (and indeed both are instantiations of the proximal point method
[64]), and so the final method we derive is closely related to the SCS algorithm. Ap-
plying DR splitting to the embedded problem results in an iterative procedure with a
per-iteration cost that is almost identical to the linear-convex case as tackled by SCS
and to applying the splitting method directly to the original problem [75, 59].

There are several advantages that the homogeneous embedding approach has
over competing methods of generating certificates of infeasibility based on diverging
sequences [5, 38]. When using the homogeneous embedding, infeasibility certificates
are generated by convergence. Alternative methods generate certificates by diver-
gence, typically by examining the difference between successive iterates. This means
when using the homogeneous embedding we have much more flexibility about how
we converge to a solution. For instance, we can apply any procedure that guarantees
convergence to a (nonzero) fixed point, which means we can use inexact or stochastic
updates [64, 23], modern acceleration techniques [30, 78, 69, 66], or second-order ex-
tensions [1]. Moreover, approaches relying on DR splitting automatically benefit from
the guaranteed o(1/k) bound on the convergence rate [32, 16]. This is in contrast to
the difference of diverging iterates produced by DR splitting which have no guaranteed
rate of convergence in general, satisfying a weaker notion of convergence instead [38,
Thm. 3]. This stronger convergence guarantee is not just theoretical, since algorithms
for the homogeneous embedding tends to be faster and more robust at detecting in-
feasibility in practice. This was shown recently for interior point methods [45] and
we shall show similar results experimentally for DR splitting. On the other hand, if
the problem is feasible, then using the homogeneous embedding does not appear to
harm convergence when compared to tackling the original problem directly. On the
contrary, we present numerical evidence to suggest that the homogeneous embedding
approach can actually converge to a solution slightly faster than direct approaches
even when the problem is feasible, at least when DR splitting is used.

QCPs are an important problem type with many applications, some of which
we list here. Every linear program, quadratic program, second-order cone program,
semidefinite program, exponential cone program, etc., can be formulated as a QCP.
Sequential quadratic programming is an effective nonlinear constrained optimization
algorithm that relies on solving a sequence of QCPs in order to converge to the so-
lution of the original nonlinear problem [55, Chap. 18], [71]. In machine learning the
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support vector machine and the lasso can both be formulated as QCPs [53, 70]. In
portfolio optimization the standard trade-off between return and risk is often formu-
lated as a QCP once additional constraints, such as trading costs, leverage limits,
etc., are incorporated [43, 11]. Model predictive control with quadratic stage costs is
a QCP with a particular sparsity structure [13, 59, 67]. Quadratic objectives over the
semidefinite cone come up when solving matrix reconstruction and low rank matrix
completion problems, where the goal is to find a positive semidefinite matrix with low
rank that minimizes the Frobenius norm to some reference [34, 35]. Fast and robust
generation of certificates of infeasibility is important in a range of applications. For
example, in a branch and bound procedure applied to a mixed-integer quadratic pro-
gramming problem some branches are infeasible and pruning those away reliably is
crucial for good performance [36, 50].

Software. The quadratic cone programming algorithm we describe in this paper
has been implemented in C and is available online at https://github.com/cvxgrp/scs/
tree/3.0.0. It is written as an extension of the SCS solver and it thus inherits the
capabilities of SCS. Specifically, it can solve convex QCPs involving any combination
of nonnegative, second-order, semidefinite, exponential, and power cones (and their
duals). It has multithreaded and single-threaded versions, can run on both CPU and
GPU, and solves the linear system at each iteration using either a direct method or
an iterative method. It can be used in other C, C++, Python, MATLAB, R, Julia,
and Ruby programs and is a supported solver in parser-solvers CVX [31], CVXPY
[18], Convex.jl [73], JuMP [21], and YALMIP [39].

2. Monotone operator preliminaries. This manuscript is concerned with op-
erator splitting algorithms applied to a monotone inclusion problem, so here we cover
the basic concepts that we use later; for more detail see, e.g., [7, 65]. An operator (or
relation, point-to-set mapping, multivalued function) F on \BbbR d can be characterized
by its graph, which is a subset of \BbbR d \times \BbbR d [7, Chap. 1.2]. We shall use the notation
F (x) to refer to the set \{ y | (x, y) \in F\} (we are abusing notation here by using F to
refer to both the operator and its graph). Many of the operators we consider in this
paper are single-valued, i.e., for a fixed x \in \BbbR d the set \{ y | (x, y) \in F\} is a singleton
and with some abuse of notation we shall write y = F (x) in this case.

An operator F is monotone if it satisfies

(u - v)\top (x - y) \geq 0 \forall (x, u), (y, v) \in F,

or in shorthand notation

(F (x) - F (z))\top (x - z) \geq 0,

for all x, z \in dom(F ), where the domain is taken to be dom(F ) = \{ x | F (x) \not = \emptyset \} .
A monotone operator is maximal if it is not strictly contained by another mono-

tone operator, i.e., extending F to include (x, u) \in \BbbR d \times \BbbR d would result in a non-
monotone operator for any (x, u) not already in F . Maximality is not just a technical
detail; it is an important property for convergence of the algorithms we develop in this
manuscript and we shall verify that the operators we present are maximal monotone.
Examples of maximal monotone operators include the identity operator I = \{ (x, x) | 
x \in \BbbR d\} and the subdifferential \partial f = \{ g | f(z) \geq f(x) + g\top (z  - x) for all z \in \BbbR n\} of
closed, convex, proper function f : \BbbR n \rightarrow \BbbR [65].

2.1. Operator splitting. In this manuscript we deal with monotone inclusion
problems involving the sum of two maximal monotone operators; that is, we want to
find a u \in \BbbR d such that

https://github.com/cvxgrp/scs/tree/3.0.0
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0 \in F (u) +G(u),(2.1)

where F and G are maximal monotone operators on \BbbR d. Operator splitting methods
are a family of algorithms for finding a zero in this case whereby we make use of
the operators that define the problem separately. In this manuscript we focus on the
well-known DR splitting method. DR splitting applied to the inclusion problem (2.1)
is the following iterative procedure: From any initial w0 \in \BbbR d repeat for k = 0, 1, . . .,

\~uk+1 = (I + F ) - 1wk,

uk+1 = (I +G) - 1(2\~uk+1  - wk),

wk+1 = wk + uk+1  - \~uk+1.

(2.2)

If a solution to (2.1) exists, then the DR splitting procedure generates a sequence of
iterates (wk, uk, \~uk) that satisfy \| uk - \~uk\| \rightarrow 0, uk \rightarrow u \star , and wk \rightarrow w \star \in u \star +F (u \star ),
where u \star \in \BbbR d is a solution [7, Thm. 26.11]. The quantity \| wk+1  - wk\| 22 converges
to zero at a rate of o(1/k) [16, Cor. 2], [32, Thm. 3.1]. If a solution does not exist,
then the iterates generated by DR splitting will not converge.

2.2. Resolvent operator. The first two steps of DR splitting require the eval-
uation of the resolvent of the two operators in the inclusion, which for operator F is
(I + F ) - 1. The resolvent of a maximal monotone operator is always single-valued,
even if the operator that defines it is not, and has full domain [46, 47]. If F is the
subdifferential of a convex function f , then the resolvent is known as the proximal
operator [60] and is given by

y = (I + \partial f) - 1x

\leftrightarrow 0 \in \partial f(y) + y  - x

\leftrightarrow y = argminz
\bigl( 
f(z) + (1/2)\| z  - x\| 22

\bigr) 
.

(2.3)

3. The monotone and linear complementarity problems. QCPs are the
main problems of interest in this paper and in this section we review the relationship
between QCPs and LCPs, which are themselves a special case of MCPs. We introduce
these complementarity problems and show their equivalence to monotone inclusion
problems, to which we can apply operator splitting techniques. In what follows we
shall embed the conditions for feasibility and infeasibility of an LCP into an MCP.

The monotone complementarity problem MCP(F, \scrC ) defined by maximal mono-
tone operator F on \BbbR d and nonempty, closed, convex cone \scrC is to find a point z \in \BbbR d

for which

\exists w \in F (z) s.t. \scrC \ni z \bot w \in \scrC \ast ,(3.1)

where \scrC \ast denotes the dual cone to \scrC , i.e., \scrC \ast = \{ w | w\top z \geq 0, z \in \scrC \} . That is, the
problem is to find a z \in \scrC such that for some w \in F (z) \cap \scrC \ast we have z\top w = 0. If F
is single-valued, then we can write the problem more succinctly as finding a z \in \BbbR d

such that \scrC \ni z \bot F (z) \in \scrC \ast .
Problem (3.1) is equivalent to finding a z \in \scrC that satisfies the following varia-

tional inequality [7, Def. 26.19]:

\exists w \in F (z) s.t. (y  - z)\top w \geq 0 \forall y \in \scrC .(3.2)
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To see this first note that if we have a (z, w) \in F that satisfies (3.1), then clearly

y\top w \geq z\top w = 0

for all y \in \scrC since w \in \scrC \ast . To see the other direction consider a (z, w) \in F with
z \in \scrC that satisfies (3.2) and note that if z\top w \not = 0, then we can take y = (1/2)z or
y = (3/2)z to violate the upper bound property, so it must be the case that z\top w = 0,
then y\top w \geq 0 for all y \in \scrC implies that w \in \scrC \ast .

These problems are also equivalent to the problem of finding a z \in \BbbR d that satisfies
the following inclusion:

0 \in F (z) +N\scrC (z),(3.3)

where N\scrC (z) is the normal cone operator for cone \scrC , and is given by

N\scrC (z) =

\Biggl\{ 
\{ x | (y  - z)\top x \leq 0 \forall y \in \scrC \} , z \in \scrC ,
\emptyset , z \not \in \scrC .

It is readily shown that N\scrC = \partial I\scrC , i.e., the subdifferential of the convex indicator
function for \scrC . Therefore N\scrC is maximal monotone with resolvent (I + N\scrC )

 - 1x =
\Pi \scrC (x), the Euclidean projection onto \scrC , as can be seen using (2.3).

To see equivalence of problem (3.2) and (3.3), note that if z satisfies (3.3) then
z \in \scrC and there exists w \in F (z) such that  - w \in N\scrC (z) and so z satisfies (3.2) and
vice versa. The sum of two maximal monotone operators is also maximal monotone,
so problem (3.3) is a maximal monotone inclusion problem.

An affine function F (z) = Mz + q with matrix M \in \BbbR d\times d and vector q \in \BbbR d is
maximal monotone if and only if M is monotone, i.e.,

M +M\top \succeq 0,(3.4)

where we use the notation \cdot \succeq 0 to denote membership in the positive semidefinite cone
of matrices. In this case MCP(F, \scrC ) is a monotone linear complementarity problem
LCP(M, q, \scrC ), i.e., the problem of finding z \in \BbbR d such that

\scrC \ni z \bot (Mz + q) \in \scrC \ast .(3.5)

When M is not monotone then the LCP may be very difficult to solve [15]. One
immediate consequence of the fact that M is monotone is that

z\top Mz = 0 \leftrightarrow (M +M\top )z = 0,(3.6)

which can be seen from the fact that z\top Mz = (1/2)z\top (M + M\top )z = (1/2)\| (M +
M\top )1/2z\| 22 for any z \in \BbbR d. We shall make use of this fact in our analysis.

3.1. Quadratic cone programming. As a concrete example of an LCP take
the convex QCP, which is the following primal-dual problem pair:

minimize (1/2)x\top Px+ c\top x

subject to Ax+ s = b,

s \in \scrK ,

maximize  - (1/2)x\top Px - b\top y

subject to Px+A\top y + c = 0,

y \in \scrK \ast ,

(3.7)

over variables x \in \BbbR n, s \in \BbbR m, y \in \BbbR m, with data A \in \BbbR m\times n, P \in \BbbR n\times n, c \in \BbbR n,
b \in \BbbR m, where \scrK is a nonempty, closed, convex cone and where P = P\top \succeq 0 (for a
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derivation of the dual see [5, A.2]). When strong duality holds, the Karush--Kuhn--
Tucker (KKT) conditions are necessary and sufficient for optimality [10, sect. 5.5.3].
They are given by

Ax+ s = b, Px+A\top y + c = 0, s \in \scrK , y \in \scrK \ast , s \bot y.(3.8)

These are primal feasibility, dual feasibility, primal and dual cone membership, and
complementary slackness. The complementary slackness condition is equivalent to a
zero duality gap condition at any optimal point, that is, for (x, y, s) that satisfy the
KKT conditions we have

s \bot y \leftrightarrow c\top x+ b\top y + x\top Px = 0.(3.9)

The KKT conditions can be rewritten as

\BbbR n \times \scrK \ast \ni 

\Biggl[ 
x

y

\Biggr] 
\bot 

\Biggl[ 
Px+A\top y + c

b - Ax

\Biggr] 
\in \{ 0\} n \times \scrK ,(3.10)

which corresponds to LCP(M, q, \scrC ) in variable z \in \BbbR d with

z =

\Biggl[ 
x

y

\Biggr] 
, M =

\Biggl[ 
P A\top 

 - A 0

\Biggr] 
, q =

\Biggl[ 
c

b

\Biggr] 
, \scrC = \BbbR n \times \scrK \ast ,(3.11)

where dimension d = n+m and M is monotone, i.e., satisfies (3.4), since P \succeq 0.
If there exists a solution to the QCP that satisfies the KKT conditions, then there

exists a solution to the LCP and vice versa. On the other hand, if the QCP is strongly
primal or dual infeasible, then the LCP is strongly infeasible and vice versa. In this
case any y \in \BbbR m that satisfies

A\top y = 0, y \in \scrK \ast , b\top y < 0,(3.12)

acts a certificate that the QCP is primal infeasible (dual unbounded) [10, sect. 5.8].
Similarly, if we can find x \in \BbbR n such that

Px = 0,  - Ax \in \scrK , c\top x < 0,(3.13)

then this is a certificate that the problem is dual infeasible (primal unbounded) [10,
sect. 5.8]. We shall discuss how these certificates relate to infeasibility of LCPs in
what follows.

4. A homogeneous embedding for monotone LCPs. As we have seen, ev-
ery monotone LCP can be written as the monotone inclusion problem in (3.3). How-
ever, if the original LCP is infeasible (when there does not exist a z \in \BbbR d that satisfies
the conditions (3.5)), then the monotone inclusion problem does not have a solution.
In this section we derive a homogeneous embedding that always has a solution, even
when the original LCP is infeasible. To do so we derive two homogeneous MCPs,
one that encodes feasibility and another that encodes (strong) infeasibility. The final
embedding is then an MCP involving the union of these two operators, which we shall
show is maximal monotone.

4.1. LCP feasibility. Andersen and Ye developed a homogeneous embedding
that encodes the feasibility conditions for MCPs [2]. When specialized to the d-
dimensional LCP(M, q, \scrC ) case the (single-valued) embedding operator \scrF : \BbbR d \times 
\BbbR ++ \rightarrow \BbbR d+1 (where \BbbR ++ denotes the set of strictly positive real numbers) is given
by
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\scrF (z, \tau ) =

\Biggl[ 
Mz + q\tau 

 - z\top Mz/\tau  - z\top q

\Biggr] 
(4.1)

and the embedded MCP(\scrF , \scrC +) is to find a u \in \BbbR d+1 such that

\scrC + \ni u \bot \scrF (u) \in \scrC \ast 
+,(4.2)

where \scrC + = \scrC \times \BbbR +, with dual cone \scrC \ast 
+ = \scrC \ast \times \BbbR + (where \BbbR + denotes the set of

nonnegative real numbers). Note that complementarity always holds, since u\top \scrF (u) =
0 for any u \in dom(\scrF ). Next we show that MCP(\scrF , \scrC +) encodes the set of solutions
to LCP(M, q, \scrC ). If there exists a point z \star \in \BbbR d that solves LCP(M, q, \scrC ), i.e., satisfies
(3.5), then for any t > 0

\scrC + \ni 

\Biggl[ 
tz \star 

t

\Biggr] 
\bot 

\Biggl[ 
t(Mz \star + q)

0

\Biggr] 
\in \scrC \ast 

+(4.3)

and so u = (tz \star , t) \in \BbbR d \times \BbbR ++ is a solution to the homogeneous embedding (4.2).
Now we show the other direction. Let u = (z, \tau ) \in dom(\scrF ), i.e., \tau > 0, be a solution
to (4.2). We know that z\top (Mz + q\tau ) = 0, and so (z/\tau ) \bot (M(z/\tau ) + q) and due to
the positive homogeneity of cones z/\tau \in \scrC and (M(z/\tau ) + q) \in \scrC \ast . These imply that
the point z/\tau satisfies the conditions of (3.5) and so is a solution to LCP(M, q, \scrC ).

Lemma 4.1. The operator \scrF is monotone.

Proof. Let u = (uz, u\tau ) \in \BbbR d \times \BbbR ++, w = (wz, w\tau ) \in \BbbR d \times \BbbR ++; then,

(\scrF (u) - \scrF (w))\top (u - w) =  - (\scrF (u))\top w  - (\scrF (w))\top u

=  - w\top 
z Muz + w\tau u

\top 
z Muz/u\tau  - u\top 

z Mwz + u\tau w
\top 
z Mwz/w\tau 

= u\tau w\tau (Muz/u\tau  - Mwz/w\tau )
\top (uz/u\tau  - wz/w\tau )

\geq 0

since M is monotone and u\tau w\tau > 0.

Although \scrF is monotone, it is not maximal monotone, which is a required prop-
erty for DR splitting to have guaranteed convergence. In order to extend the operator
to be maximal we must consider infeasibility of the original LCP, which we do next.

4.2. LCP infeasibility. Let us denote by \scrA = \{ (z, w) | w =  - (Mz + q)\} .
LCP(M, q, \scrC ) is feasible if and only if there exists a point (z, w) \in N\scrC \cap \scrA . To see this
observe that any such point satisfies  - (Mz+q) = w \in N\scrC (z), so 0 \in (Mz+q)+N\scrC (z),
i.e., z satisfies (3.3). If N\scrC \cap \scrA = \emptyset , then no such point exists and the problem is
infeasible. A stronger condition is that the distance between the sets N\scrC and \scrA is
strictly positive, that is,

dist(N\scrC ,\scrA ) = inf
(z1,w1)\in N\scrC ,(z2,w2)\in \scrA 

\| (z1, w1) - (z2, w2)\| > 0,

in which case we refer to the problem as strongly infeasible [42, 40, 41]. A necessary
and sufficient condition for this is that the sets are strongly separated [63, Chap. 11],
which is the existence of a strongly separating hyperplane with normal vector (\mu , \lambda ) \in 
\BbbR d \times \BbbR d that satisfies

inf
(z,w)\in \scrA 

(z\top \mu + w\top \lambda ) > 0, sup
(z,w)\in N\scrC 

(z\top \mu + w\top \lambda ) \leq 0,
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sinceN\scrC is a cone [63, Thm. 11.7]. We can simplify this by substituting w =  - (Mz+q)
into the first condition, yielding

inf
z\in \BbbR d

(z\top (\mu  - M\top \lambda ) - \lambda \top q) > 0,

which implies that \mu = M\top \lambda , and consequently that \lambda \top q < 0. This brings us to
necessary and sufficient conditions for strong infeasibility of LCP(M, q, \scrC ), which is
the existence of a \lambda \in \BbbR d such that

\lambda \top q < 0, sup
(z,w)\in N\scrC 

\lambda \top (Mz + w) \leq 0.(4.4)

Next we establish that the above conditions on \lambda can be embedded into another LCP.

Lemma 4.2. LCP(M, q, \scrC ) is strongly infeasible if and only if there exists a \lambda \in \BbbR d

with \lambda \top q < 0 that solves LCP(M, 0, \scrC ), i.e.,

\scrC \ni \lambda \bot M\lambda \in \scrC \ast .(4.5)

Proof. First, we show that any certificate of strong infeasibility solves (4.5). Con-
sider the second condition in (4.4); setting z = 0 yields w\top \lambda \leq 0 for all w \in N\scrC (0) =
 - \scrC \ast , and so \lambda \in \scrC . For any z \in \scrC we know that 0 \in N\scrC (z) and so \lambda \top Mz \leq 0,
which implies that  - M\top \lambda \in \scrC \ast . Together these tell us that \lambda \top M\lambda \leq 0, but since
M is monotone it must be that \lambda \top M\lambda = 0 and therefore M\lambda =  - M\top \lambda , using (3.6).
Putting it together with the fact that \lambda \top q < 0 yields the final result.

Now we show the other direction: assume \lambda \in \BbbR d satisfies (4.5) with \lambda \top q < 0.
We must show that this satisfies the second condition in (4.4). Take any (z, w) \in N\scrC 
and x \in \scrC ; then from the definition of normal cones x\top w \leq z\top w. If x\top w > 0, then
there must exist some t > 0 such that tx\top w > z\top w, and since tx \in \scrC this would
contradict that fact that w \in N\scrC (z). So it must be the case that x\top w \leq 0. Since
x was arbitrary in \scrC it implies that  - w \in \scrC \ast , and so \lambda \top w \leq 0 due to \lambda \in \scrC . Since
\lambda \top M\lambda = 0 we know that M\lambda =  - M\top \lambda \in \scrC \ast from (3.6), so z\top (M\top \lambda ) \leq 0. Summing
these two yields \lambda \top (Mz + w) \leq 0 for any (z, w) \in N\scrC .

We call any \lambda that satisfies (4.4) a proof or certificate of (strong) infeasibility. The
existence of such a \lambda precludes the existence of (z, w) \in N\scrC \cap \scrA , and any (z, w) \in N\scrC \cap \scrA 
acts as a certificate that there is no \lambda satisfying (4.4). In other words at most one of
(4.4) and (3.5) has a solution and they are therefore weak alternatives. This can also be
proven directly from the LCPs: Assume that we have found both a z \in \BbbR d that solves
LCP(M, q, \scrC ) and a \lambda \in \BbbR d that solves LCP(M, 0, \scrC ) with \lambda \top q < 0. Then z + \lambda \in \scrC 
and M(z+\lambda )+ q \in \scrC \ast and from cone duality 0 \leq (z+\lambda )\top (M(z+\lambda )+ q) = \lambda \top q < 0,
which is a contradiction.

In the special case of a QCP satisfying strong duality then exactly one of those
two systems has a solution and they are strong alternatives [10, sect. 5.8].

4.2.1. QCP infeasibility. Here we show that the conditions in (4.5) are exactly
equivalent to the conditions of (strong) primal infeasibility (3.12) or (strong) dual
infeasibility (3.13) in the case where we are solving a QCP, and that any certificate
for one can be converted into a certificate for the other.

First, consider the case where y \in \BbbR m is a certificate of primal infeasibility for
the QCP; then \lambda = (0, y) \in \BbbR n \times \BbbR m is a certificate for the LCP since it is readily
verified to satisfy the conditions in (4.5) with \lambda \top q = b\top y < 0. Similarly, if x \in \BbbR n is a
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certificate of dual infeasibility for the QCP, then \lambda = (x, 0) \in \BbbR n \times \BbbR m is a certificate
of infeasibility for the LCP by the same logic.

Now consider \lambda = (x, y) \in \BbbR n \times \BbbR m a certificate of infeasibility for LCP(M, q, \scrC )
corresponding to a QCP, in which case using (4.5) we have

\BbbR n \times \scrK \ast \ni 

\Biggl[ 
x

y

\Biggr] 
\bot 

\Biggl[ 
Px+A\top y

 - Ax

\Biggr] 
\in \{ 0\} n \times \scrK .(4.6)

First note that y \in \scrK \ast and  - Ax \in \scrK . The second orthogonality condition implies
that y\top Ax = 0. From this and the first orthogonality condition we can infer that
x\top Px = 0 and so Px = 0, and therefore A\top y = 0 due to the \{ 0\} n cone membership.
Finally, q\top \lambda = c\top x + b\top y < 0 by assumption, and so at least one of c\top x or b\top y
is negative. If c\top x < 0, then x is a certificate for dual infeasibility for the QCP
since it satisfies (3.13); on the other hand if b\top y < 0, then y is a certificate of primal
infeasibility since it satisfies (3.12). If both c\top x and b\top y are negative, then the original
problem is both primal and dual infeasible.

4.3. Infeasibility embedding. Here we introduce a homogeneous operator
that encodes the infeasibility conditions for LCP(M, q, \scrC ). It will become clear why
we need this operator in the next section when we use it to derive the complete
embedding. Based on Lemma 4.2 we define the operator \scrI on \BbbR d+1 as

\scrI (z, \tau ) =

\Biggl\{ \Biggl[ 
Mz

\kappa 

\Biggr] \bigm| \bigm| \bigm| \bigm| \bigm| \kappa \leq  - z\top q

\Biggr\} 
, dom(\scrI ) = \{ (z, 0) | z\top Mz = 0\} ,(4.7)

where (z, \tau ) \in \BbbR d\times \BbbR . Consider MCP(\scrI , \scrC +), that is, the problem of finding u \in \BbbR d+1

for which

\exists v \in \scrI (u) s.t. \scrC + \ni u \bot v \in \scrC \ast 
+.(4.8)

Note that again complementarity is always satisfied, i.e., u\top v = 0 for all (u, v) \in \scrI .
If \lambda is a certificate of infeasibility for LCP(M, q, \scrC ), then (\lambda , 0) \in dom(\scrI ) and\Biggl[ 

M\lambda 

 - \lambda \top q

\Biggr] 
\in \scrI (\lambda , 0),

and therefore (\lambda , 0) is a solution to MCP(\scrI , \scrC +). On the other hand, any solution u to
MCP(\scrI , \scrC +) such that (w, \kappa ) = v \in \scrI (u) with \kappa > 0 yields a certificate of infeasibility
for LCP(M, q, \scrC ).

Lemma 4.3. The operator \scrI is monotone.

Proof. Let u = (uz, 0) \in \BbbR d \times \BbbR and w = (wz, 0) \in \BbbR d \times \BbbR such that u,w \in 
dom(\scrI ), then,

(\scrI (u) - \scrI (w))\top (u - w) =  - \scrI (u)\top w  - \scrI (w)\top u
=  - u\top 

z Mwz  - w\top 
z Muz

=  - w\top 
z (M +M\top )uz

= 0

since (M +M\top )uz = (M +M\top )wz = 0 using (3.6).
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4.4. Final embedding. We have two homogeneous monotone operators, \scrF and
\scrI , with associated problems MCP(\scrF , \scrC +) and MCP(\scrI , \scrC +) that encode feasibility and
infeasibility of the original problem LCP(M, q, \scrC ), respectively. However, neither of
these operators is maximal. In the next section we show that the union of the two
operators is maximal monotone, and the associated MCP encodes both feasibility and
infeasibility of the original LCP. Let

\scrQ = \scrF \cup \scrI 

with dom(\scrQ ) = dom(\scrF ) \cup dom(\scrI ). The operator \scrQ satisfies complementarity, i.e.,
u\top v = 0 for all (u, v) \in \scrQ , and is positively homogeneous, i.e., \scrQ (tu) = t\scrQ (u) for any
t > 0. The embedded problem is to solve MCP(\scrQ , \scrC +), i.e., find a u \in \BbbR d+1 for which

\exists v \in \scrQ (u) s.t. \scrC + \ni u \bot v \in \scrC \ast 
+,(4.9)

which from section 3 we know is equivalent to the monotone inclusion

0 \in \scrQ (u) +N\scrC +
(u).(4.10)

As we shall show, both \scrQ and N\scrC +
are maximal monotone and so we can apply

operator splitting methods to solve this problem. First, we discuss how the solutions to
MCP(\scrQ , \scrC +) encode the solutions or certificates of infeasibility to LCP(M, q, \scrC ). Let
u \star = (z \star , \tau  \star ) \in \BbbR d\times \BbbR be any point that satisfies (4.9), and let (w \star , \kappa  \star ) = v \star \in \scrQ (u \star ).
From complementarity we know that

(u \star )\top v \star = (z \star )\top w \star + \tau  \star \kappa  \star = 0.

However, (z \star )\top w \star \geq 0 and \tau  \star \kappa  \star \geq 0 since \scrC + and \scrC \ast 
+ are dual, and so it must be that

z \star \bot w \star and at most one of \tau  \star and \kappa  \star can be positive. When \tau  \star > 0 then \kappa  \star = 0,
u \star \in dom(\scrF ), v \star = \scrF (u \star ), the problem is feasible and a solution to LCP(M, q, \scrC ) can
be derived from u \star . When \kappa  \star > 0 then \tau  \star = 0, u \star \in dom(\scrI ), v \star \in \scrI (u \star ), the problem
is infeasible and a certificate of infeasibility of LCP(M, q, \scrC ) can be obtained from u \star .
The next case to consider is when \tau  \star = \kappa  \star = 0 with u \not = 0. This is pathological and
rarely arises in practice [76]. We can rule out some situations for this case; for example,
if the set of solutions to the LCP is nonempty and bounded, then this pathology cannot
occur. On the other hand, if the LCP is weakly infeasible, then the only solutions
to the homogeneous embedding have this form. This includes, for example, feasible
QCPs that do not satisfy strong duality. However, in that case it may be possible
to modify the problem using facial reduction techniques [62] or to understand the
pathology by examining how the iterates generated by DR splitting behave [38].

These cases are summarized in Table 1. The only other possibility we must
consider is the trivial solution u = 0, which is always a solution to MCP(\scrQ , \scrC +), no
matter the problem data. However, we shall prove later that DR splitting will not
converge to zero if properly initialized, so we can safely ignore this possibility.

Table 1
How the solutions of the MCP relate to the status of the LCP.

\tau  \star > 0 \tau  \star = 0

\kappa  \star > 0 N/A Infeasible

\kappa  \star = 0 Solved Pathological
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4.5. Maximal monotonicity of \bfscrQ . In order to apply DR splitting to prob-
lem (4.10) we need \scrQ to be maximal monotone, without which convergence is not
guaranteed.

Lemma 4.4. The operator \scrQ = \scrF \cup \scrI is maximal monotone.

Proof. Since \scrF and \scrI are both monotone, to show that \scrQ is monotone we need
only consider points u \in dom(\scrF ) and w \in dom(\scrI ). Let u = (uz, u\tau ) \in \BbbR d \times \BbbR ++,
w = (wz, 0) \in \BbbR d \times \BbbR , and (Mwz, \kappa ) \in \scrI (w); then

(\scrQ (u) - \scrQ (w))\top (u - w) =  - \scrQ (u)\top w  - \scrQ (w)\top u

=  - \scrF (u)\top w  - \scrI (w)\top u
\ni  - w\top 

z (Muz + qu\tau ) - u\top 
z (Mwz) - u\tau \kappa 

=  - u\top 
z (M +M\top )wz  - u\tau (\kappa + w\top 

z q)

\geq 0

since (M + M\top )wz = 0 and \kappa \leq  - w\top 
z q. Since it holds for any \kappa satisfying the

inclusion this establishes that \scrQ is monotone; next we shall show maximality.
For any monotone operator there exists a maximal monotone extension of it with

domain contained in the closure of the convex hull of its domain [7, Thm. 21.9]. The
domain of \scrF is \BbbR d \times \BbbR ++, which is convex, and so there exists a maximal monotone
extension of \scrF with domain contained in \BbbR d \times \BbbR +. Let \scrF denote such an extension.
We shall show that \scrF is unique and \scrF = \scrQ .

To construct the extension we need to find all pairs (p, r) such that \scrF \cup \{ p, r\} is
monotone, with p \in \BbbR d\times \BbbR +. Since \scrF is continuous on the interior of its domain we can
use standard arguments to show that no such extension pair with p \in dom(\scrF ) exists
[7]. So any extension pairs (p, r) must have p on the boundary of \BbbR d\times \BbbR +, which, if we
let p = (pz, p\tau ) \in \BbbR d\times \BbbR , corresponds to points with p\tau = 0. Let u = (z, \tau ) \in dom(\scrF )
and consider points p = (pz, 0) \in \BbbR d \times \BbbR and r = (rz, r\tau ) \in \BbbR d \times \BbbR . The monotone
property implies that (p, r) must satisfy

0 \leq (\scrF (u) - r)\top (u - p)

=  - \scrF (u)\top p - r\top (u - p)

=  - p\top z Mz  - \tau p\top z q  - r\top z (z  - pz) - r\tau \tau .

Since z is arbitrary this implies that M\top pz + rz = 0, which in turn implies that

0 \leq  - \tau (p\top z q + r\tau ) - p\top z Mpz.

Letting \tau \rightarrow 0 we get p\top z Mpz \leq 0, but since M is monotone this implies that

p\top z Mpz = 0(4.11)

and so Mpz =  - M\top pz from (3.6), which yields

Mpz = rz.(4.12)

Finally, since \tau \geq 0 we have

r\tau \leq  - p\top z q.(4.13)
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The conditions (4.11), (4.12), (4.13) on (p, r) are exactly the conditions for (p, r) \in \scrI 
from the definition of \scrI in (4.7). Thus all extension pairs must be elements of \scrI and
so \scrF \subseteq \scrF \cup \scrI = \scrQ . However, it cannot be the case that \scrF \subset \scrQ strictly, as \scrQ is
monotone this would violate the maximality of \scrF . Therefore we can conclude that
\scrF = \scrQ , i.e., \scrQ = \scrF \cup \scrI is a maximal monotone extension of \scrF .

5. Douglas--Rachford splitting for LCPs. We have discussed how the feasi-
bility and infeasibility conditions for an LCP can be embedded into a single homoge-
neous MCP. In this section we apply DR splitting to MCP(\scrQ , \scrC +); the algorithm that
solves the homogeneous embedded problem is the main result of this manuscript.

We have established that the operator \scrQ is maximal monotone (as is N\scrC +
). This

implies that DR splitting applied to MCP(\scrQ , \scrC +) will enjoy the convergence properties
discussed in section 2. That is, from any initial w0 \in \BbbR d+1 the procedure for k =
0, 1, . . .,

\~uk+1 = (I +\scrQ ) - 1wk,

uk+1 = \Pi \scrC +
(2\~uk+1  - wk),

wk+1 = wk + uk+1  - \~uk+1,

(5.1)

will converge to a fixed point from which we can derive a solution or a certificate of
infeasibility for the original LCP(M, q, \scrC ). The remaining difficulty is the evaluation
of the resolvent of \scrQ , which we discuss in what follows.

By way of comparison, we can also apply DR splitting to LCP(M, q, \scrC ) directly,
which yields the following procedure: from any initial w0 \in \BbbR d for k = 0, 1, . . .,

\~uk+1 = (I +M) - 1(wk  - q),

uk+1 = \Pi \scrC (2\~u
k+1  - wk),

wk+1 = wk + uk+1  - \~uk+1.

(5.2)

If a solution to LCP(M, q, \scrC ) exists, then this procedure will converge; otherwise it
has no fixed point and will not converge.

5.1. Evaluating the resolvent of \bfscrQ . Since \scrQ is maximal monotone we know
that the resolvent is single-valued and has full domain [65]. At time-step k of DR
splitting we must solve a system of equations involving the resolvent of \scrQ , that is,
solve \Biggl[ 

z

\tau 

\Biggr] 
= (I +\scrQ ) - 1

\Biggl[ 
\mu k

\eta k

\Biggr] 
for a fixed right-hand side (\mu k, \eta k) \in \BbbR d \times \BbbR . Suppose for a moment we know that
(z, \tau ) \in dom(\scrF ), i.e., \tau > 0; then using (4.1) we must solve

(I +M)z + q\tau = \mu k,

\tau 2  - \tau (\eta k + z\top q) - z\top Mz = 0
(5.3)

for z \in \BbbR d and \tau > 0. Since M is monotone we have z\top Mz \geq 0, and so one root of the
quadratic equation is nonnegative and one is nonpositive, and since (z, \tau ) \in dom\scrQ 
it is the nonnegative root that corresponds to the solution. The solution to these
equations also encodes the solution when (z, \tau ) \in dom(\scrI ), since if z\top Mz = 0, then
the nonnegative root is given by \tau = max(0, \eta k + z\top q). In other words, \tau = 0 if and
only if \eta k \leq  - z\top q and z\top Mz = 0, which are the conditions for (z, \tau ) \in dom(\scrI ) in
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(4.7). This means the solution of (5.3) for \tau \geq 0 yields the resolvent of \scrQ for any
right-hand side. Let us denote by

pk = (I +M) - 1\mu k, r = (I +M) - 1q,

then we have
z = pk  - r\tau 

for unknown \tau \geq 0, and note that since r is constant for all iterations we only need
to compute it once at the start of the procedure and then reuse this cached value
thereafter. To solve for \tau we substitute z = pk  - r\tau into the quadratic equation (5.3)
yielding

0 = \tau 2  - \tau (\eta k + z\top q) - z\top ((I +M)z  - z)

= \tau 2  - \tau (\eta k + (pk  - r\tau )\top q) - (pk  - r\tau )\top (\mu k  - q\tau  - pk + r\tau )

= \tau 2(1 + r\top r) + \tau (r\top \mu k  - 2r\top pk  - \eta k) + (pk)\top (pk  - \mu k),

(5.4)

and for brevity we denote root+(\mu 
k, \eta k, pk, r) to be the nonnegative root of the qua-

dratic equation (5.4) when evaluated with input values (\mu k, \eta k, pk, r). Specifically, let
a = 1 + r\top r, bk = r\top \mu k  - 2r\top pk  - \eta k, and ck = (pk)\top (pk  - \mu k); then

(5.5) root+(\mu 
k, \eta k, pk, r) =

\biggl( 
 - bk +

\sqrt{} 
(bk)2  - 4ack

\biggr) 
/2a.

Since the resolvent has full domain it always has a real-valued solution for any input,
which implies that the above quadratic equation always has real roots. This fact can
also be seen directly from the equations by noting that (bk)2 \geq 0, a = 1+r\top r \geq 0, and
ck = (pk)\top (pk - \mu k) =  - (pk)\top Mpk \leq 0 since M is monotone, and so (bk)2 - 4ack \geq 0.

5.2. Final algorithm. With the resolvent of \scrQ in place we are ready to present
DR splitting applied to problem (4.10) as Algorithm 5.1. The uk, \~uk, wk terms in
Algorithm 5.1 are simply to relate the procedure to that described in (5.1).

Note that neither Algorithm 5.1 nor the procedure described in (5.2) has any
explicit hyperparameters (e.g., step-size), though in practice the relative scaling of the
problem data can have a large impact on the convergence of the algorithm and most
practical solvers based on DR splitting or ADMM implement some sort of heuristic
data rescaling [56, 24, 14, 28].

Algorithm 5.1 and the procedure in (5.2) differ only in that Algorithm 5.1 main-
tains an additional set of scalar parameters (\tau , \~\tau , and \eta ), and consequently the com-
putational costs of the two algorithms are essentially the same. However, (5.2) will
not converge if the LCP is infeasible, whereas Algorithm 5.1 will always converge
and will produce a certificate of infeasibility should one exist. In fact, the proce-
dure in (5.2) can be interpreted as Algorithm 5.1 where we fix the scalar parameters
\tau = \~\tau = \eta = 1. It may be the case that this is not the best choice for any particular
problem and allowing these scale parameters to vary makes the problem easier, even
for feasible cases. We shall present some preliminary evidence of this effect in the
numerical experiments sections.

For the special case of QCPs with P = 0 the problem reduces to a linear cone
program of the form that the original SCS algorithm [56] was developed to tackle.
Unsurprisingly, we recover SCS from Algorithm 5.1 in this case (modulo the change
of variables required to go from ADMM to DR splitting), with the minor difference
that Algorithm 5.1 constrains the \~\tau k variable to always be nonnegative, which is not
the case in SCS.
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Algorithm 5.1 DR splitting for the homogeneous embedding of LCPs

Input: LCP(M, q, \scrC )
compute r = (I +M) - 1q
initialize \mu 0 \in \BbbR d, \eta 0 > 0
for k = 0, 1, . . . do

\~uk+1 :

\left\{       
pk = (I +M) - 1\mu k

\~\tau k+1 = root+(\mu 
k, \eta k, pk, r)

\~zk+1 = pk  - r\~\tau k+1

uk+1 :

\Biggl\{ 
zk+1 = \Pi \scrC (2\~z

k+1  - \mu k)

\tau k+1 = \Pi \BbbR +
(2\~\tau k+1  - \eta k)

wk+1 :

\Biggl\{ 
\mu k+1 = \mu k + zk+1  - \~zk+1

\eta k+1 = \eta k + \tau k+1  - \~\tau k+1

end for

5.3. Eliminating the trivial solution. Since problem (4.10) is homogeneous
the point u = 0 is a solution no matter the data, and we might worry that our approach
will converge to zero, or to a point so close to zero that it is impossible to recover a
solution to the original LCP in a numerically stable way. Here we generalize a result
from [56] to show that this cannot happen so long as the procedure is initialized
correctly.

Lemma 5.1. Fix w0 \in \BbbR d and consider the sequence wk+1 = \scrT (wk) for k =
0, 1, . . ., generated by \scrT : \BbbR d \rightarrow \BbbR d. If

1. \scrT is positively homogeneous, i.e., \scrT (tv) = t\scrT (v) for any t > 0, v \in \BbbR d,
2. \scrT has a nonzero fixed point w \star \in \BbbR p which satisfies (w \star )\top w0 > 0,
3. \scrT is nonexpansive toward any fixed point, i.e., \| \scrT (v) - w \star \| 2 \leq \| v - w \star \| 2 for

any v \in \BbbR d,
then for all k,

\| wk\| 2 \geq (w \star )\top w0

\| w \star \| 2
> 0.

Proof. Since \scrT is positively homogeneous the point tw \star is also a fixed point for
any t > 0, and since \scrT is nonexpansive toward any fixed point we have

\| wk  - tw \star \| 22 \leq \| w0  - tw \star \| 22
\Rightarrow  - 2t(w \star )\top wk \leq \| w0\| 22  - 2t(w \star )\top w0

\Rightarrow \| w \star \| 2\| wk\| 2 \geq (w \star )\top w0  - \| w0\| 22/2t,

where we used Cauchy--Schwarz in the last line, and letting t \rightarrow \infty yields the desired
result.

If the operator \scrT corresponds to one step of DR splitting, then it is globally non-
expansive [7]. When applied to MCP(\scrQ , \scrC +) DR splitting is positively homogeneous,
since both \scrQ and N\scrC are positively homogeneous. Finally, if we assume that either
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an optimal solution or a certificate of infeasibility exists for LCP(M, q, \scrC ), then it
has a nonzero fixed point, and since w \star \in u \star + \scrQ (u \star ) [7], where u \star is a solution to
MCP(\scrQ , \scrC +), it is easy to initialize in such a way that the condition (w \star )\top w0 > 0 is
satisfied. For example, we can set the last entry of w0 to one and the rest of the entries
to zero. Therefore, under normal conditions DR splitting satisfies the conditions of
the lemma and so Algorithm 5.1 will converge to a point that is bounded away from
zero.

5.4. Convergence of Algorithm 5.1. The convergence guarantees for DR
splitting tell us that uk \rightarrow u \star , wk \rightarrow w \star \in u \star +\scrQ (u \star ), and \| uk  - \~uk\| \rightarrow 0, where u \star 

is a solution to MCP(\scrQ , \scrC +) [7, Thm. 26.11]. A solution always exists since u \star = 0 is
a solution, though we know from Lemma 5.1 that the procedure will not converge to
zero under benign conditions.

Consider the sequence defined as vk+1 = uk+1+wk - 2\~uk+1 for k = 0, 1, . . .. This
sequence converges to \scrQ (u \star ) since

vk+1 = uk+1 + wk  - 2\~uk+1 \rightarrow w \star  - u \star \in \scrQ (u \star ).

Furthermore, substituting in for uk+1 from (5.1) combined with the Moreau decom-
position [60, 58] yields

vk+1 = uk+1 + wk  - 2\~uk+1

= \Pi \scrC +(2\~u
k+1  - wk) + wk  - 2\~uk+1

= \Pi \scrC \ast 
+
( - 2\~uk+1 + wk).

That is, uk+1 and vk+1 correspond to the orthogonal Moreau decomposition of 2\~uk+1 - 
wk onto the cone \scrC + and its polar (negative dual) cone, which implies that vk \in \scrC \ast 

+

and uk \bot vk for all k. In summary, the iterates (uk, vk) satisfy

\scrC + \ni uk \bot vk \in \scrC \ast 
+(5.6)

for all k, and the condition vk \in \scrQ (uk) holds in the limit, i.e., the pair (uk, vk)
eventually satisfies the conditions in (4.9). Now take the special case of a QCP where
uk = (xk, yk, \tau k) \in \BbbR n\times \BbbR m\times \BbbR and vk = (0, sk, \kappa k) \in \{ 0\} n\times \BbbR m\times \BbbR . If \tau k \rightarrow \tau  \star > 0,
then, since vk converges to \scrQ (uk), these iterates will in the limit provide a solution
which satisfies the KKT conditions (3.10), i.e., (xk/\tau k, sk/\tau k, yk/\tau k) \rightarrow (x \star , s \star , y \star ).
Due to (5.6) we know that sk/\tau k \in \scrK , yk/\tau k \in \scrK \ast , and sk/\tau k \bot yk/\tau k for all k
so three of the KKT conditions are always satisfied by this sequence. Therefore to
check for optimality we only need to test that the primal residual, dual residual,
and duality gap defined in (3.9) are less than some tolerance. On the other hand if
\kappa k \rightarrow \kappa  \star > 0, then the iterates will converge to a certificate of primal infeasibility
(3.12) or dual infeasibility (3.13). To check for infeasibility we only need to check
that the certificate residuals are below some tolerance and that either c\top xk < 0 or
b\top yk < 0, since both sk and yk satisfy the cone membership requirement.

6. Implementation details for QCPs. The algorithm we have derived applies
to any monotone LCP. In this section we discuss how to perform the steps in Algorithm
5.1 efficiently for the QCP special case.

6.1. Solving the linear system. In both the procedure described in (5.2) and
Algorithm 5.1 we need to solve a system of equations with the same matrix at every
iteration. For the specific case of a QCP the linear system can be written
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\Biggl[ 
I + P AT

A  - I

\Biggr] \Biggl[ 
x

y

\Biggr] 
=

\Biggl[ 
\mu x

 - \mu y

\Biggr] 

for (x, y) \in \BbbR n \times \BbbR m and right-hand side (\mu x, \mu y) \in \BbbR n \times \BbbR m. There are two main
ways we consider to solve this system of equations. The first way is a direct method,
which solves the system exactly by initially computing a sparse permuted LDL\top fac-
torization of the matrix [17], caching this factorization, and reusing it every iteration
thereafter. In the majority of cases the factorization cost is greater than the solve
cost using the factors, so once the initial work is done the subsequent iterations are
much cheaper. Since P \succeq 0 this matrix above is quasidefinite, which implies that the
LDL\top factorization exists for any symmetric permutation [74].

Alternatively, we can apply an indirect method to solve the system approximately
at each iteration. DR splitting is robust to inexact evaluations of the resolvent opera-
tors and convergence can still be guaranteed so long as the errors satisfy a summability
condition [23]. To use an indirect method we first reduce this system by elimination
to

x = (I + P +ATA) - 1(\mu x  - AT\mu y),

y = \mu y  - Ax,

and note that the matrix I +P +ATA is positive definite. This system is then solved
with conjugate gradients (CGs) or a similar method [54, 56]. One iteration of CG
requires multiplications with the matrices P , A, and A\top . If these matrices are very
sparse, or fast multiplication routines exist for them, then one CG step can be very
fast. We run CG until the residual satisfies an error bound, at which point we return
the approximate solution. We can use techniques, such as warm-starting CG from
the previous solution and using a preconditioner to improve the convergence [12].

6.2. Cone projection. Most convex optimization problems of interest can be
expressed using a combination of the ``standard"" cones, namely the positive orthant,
second-order cone, semidefinite cone, and exponential cone [52, 51]. These cones all
have well-known projection operators [60]. Of these, only the semidefinite cone pro-
jection provides a computational challenge since it requires an eigen-decomposition,
which may be costly. If our problem consists of the Cartesian product of many of
these cones, then each of these projections can be carried out independently and in
parallel.

Alternatively, since the cone projection step is totally separated from the rest of
the algorithm, we can incorporate any number of problem-specific cones with their
own projection operators, which may perform better in practice than reformulating
the problem to use the standard cones. The restriction that the set be a cone is not
too stringent, because we can write many convex constraints as a combination of a
conic constraint and an affine constraint. In particular the set defined by a convex
function f can be transformed as

\{ s | f(s) \leq 0\} \Rightarrow \{ (t, s) | tf(s/t) \leq 0, t \geq 0\} \cap \{ (t, s) | t = 1\} ,

which is a combination of a convex cone and an affine equality constraint, which fits
our framework. If the original convex set has an efficient projection operation, then
in the worst case we can perform a bisection search over t \geq 0 using the projection
operator as a subroutine. In most cases the dominant cost of Algorithm 5.1 will be
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solving the linear system, so the additional cost of a bisection to compute the cone
projection will typically be negligible. As an example, consider the ``box"" cone defined
as

\scrK box = \{ (t, s) | tl \leq s \leq tu, t \geq 0\} ,

where l, u \in \BbbR d are data. When combined with the constraint that t = 1 this repre-
sents box constraints on the variable s, which is commonly used in LP and QP solvers.
Projection onto this cone can be done via Newton's method on the scalar variable
t, which typically only requires a few iterations to reach convergence. This cone is
supported in the SCS v3.0 solver.

7. Numerical experiments.

7.1. Comparing Algorithm 5.1 to (5.2). Here we compare the computational
efficiency of using DR splitting applied to the homogeneous embedding (Algorithm
5.1) and DR splitting applied directly to the original problem (equation (5.2)) on
a range of synthetic problems. We constructed feasible, primal infeasible, and un-
bounded (dual infeasible) QCPs over the positive orthant and compared the number
of iterations taken by (5.2) with infeasibility detection using successive iterates and
Algorithm 5.1. Since the cost per iteration is essentially identical for both approaches
the number of iterations determines the overall solve time. The results on diverging
sequences producing infeasibility certificates from Banjac et al. [5] and Liu, Ryu, and
Yin [38] do not immediately carry over to the case of (5.2) since they only hold for
ADMM applied to convex functions, and the matrix M is not the subdifferential of
a convex function. That being said, we can still use the techniques and compare the
performance in practice. In the next section we shall compare solvers that do come
with theoretical guarantees.

We randomly generated 1000 feasible, infeasible, and unbounded problems of size
n = 100 and m = 150. For feasible problems we declared the problem to be solved
when the maximum \ell \infty -norm KKT violation was 10 - 6. Similarly, for infeasible and
unbounded problems we stopped when the algorithms produced a valid certificate with
\ell \infty -norm tolerance of 10 - 6. For each problem we computed the ratio of the number of
iterations required by (5.2) to the number required by Algorithm 5.1 to solve the prob-
lem or certify infeasibility. A higher ratio indicates that Algorithm 5.1 requires fewer
iterations to solve the problem than (5.2). We present histograms of the performance
ratio in Figures 1(a), 1(b), and 1(c) for feasible, infeasible, and unbounded problems,
respectively. Evidently, generating certificates from the homogeneous embedding can
be orders of magnitude faster; the geometric mean of the ratio on infeasible problems
was 49.0 and on unbounded problems was 299.1. In fact our approach was not slower
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Fig. 1. Histograms of iteration count ratio of (5.2) to Algorithm 5.1. Higher ratios indicate
that our approach is taking fewer iterations to reach the same accuracy.
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Fig. 2. Trace of max residuals under (5.2) (nonhomogeneous) and Algorithm 5.1 (homogeneous)
for randomly selected example problems.

on a single instance. The successive differences approach failed to find a certificate of
infeasibility within the iteration limit of 105 in 27 problems. For feasible problems the
approach based on the homogeneous embedding is often quicker to find a solution,
sometimes by a significant factor. The geometric mean of the ratios was 1.6, and the
homogeneous embedding approach was faster in 987 of the 1000 problems.

In Figure 2 we show how the maximum \ell \infty -norm residuals converge on randomly
selected feasible, infeasible, and unbounded problems. For the feasible problem we
plot the maximum KKT condition residual and for the infeasible and unbounded
problems we plot the maximum residual from a valid certificate. For infeasible and
unbounded problems the approach based on the homogeneous embedding converges
to a certificate extremely rapidly, but the approach based on diverging iterates takes
many iterations to produce a certificate. For the feasible problem the difference is less
stark, but Algorithm 5.1 still converges faster, reaching the tolerance in about half
the number of iterations required by (5.2).

7.2. Comparing open-source solvers. In this section we compare SCS v3.0,
our open-source implementation of Algorithm 5.1 for QCPs, to other available open-
source solvers that apply ADMM directly to QCPs. In particular we compare to
OSQP [68] and COSMO [26], both of which rely on diverging iterates to generate
certificates of infeasibility.

As discussed in section 5.4 the iterates produced by SCS v3.0 always satisfy the
cone membership and complementarity KKT conditions defined in (3.10). Therefore
to say that a problem is solved we need to check if the primal residual, dual residual,
and duality gap are all below a certain tolerance. Specifically, SCS v3.0 terminates
when it has found x \in \BbbR n, s \in \BbbR m, and y \in \BbbR m that satisfy

\| Ax+ s - b\| \infty \leq \epsilon abs + \epsilon rel max(\| Ax\| \infty , \| s\| \infty , \| b\| \infty ),

\| Px+A\top y  - c\| \infty \leq \epsilon abs + \epsilon rel max(\| Px\| \infty , \| A\top y\| \infty , \| c\| \infty ),

| x\top Px+ c\top x+ b\top y| \leq \epsilon abs + \epsilon rel max(| x\top Px| , | c\top x| , | b\top y| ),

where \epsilon abs > 0 and \epsilon rel > 0 are user defined quantities that control the accuracy
of the solution. For the purposes of our experimental results we set \epsilon abs = 10 - 3

and \epsilon rel = 10 - 4. OSQP and COSMO have analogous quantities for the primal and
dual residual; however, they do not allow the user to specify a bound on the gap.
Therefore, in order to ensure that the gap is below the desired tolerance we solve each
problem with these solvers with the initial choices of \epsilon abs and \epsilon rel and check if the gap
is below the tolerance. If it is, then we return that solution; otherwise we halve \epsilon abs
and \epsilon rel and re-solve. This procedure is continued until the solver returns a solution
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that satisfies the gap constraint, and only the last solve counts toward the statistics.
For a concrete case of why this is necessary take the BOYD2 problem from the Maros--
M\'esz\'aros QP dataset. OSQP returns the certificate ``solved"" for this problem after
24300 iterations with an ``optimal"" objective of 343.32. However, the true optimal
objective value for this problem is 21.26 [44]. The issue is that the duality gap of the
primal-dual pair returned by OSQP is 1.3\times 103, when the desired gap is on the order
of 10 - 2. Since the primal and dual residuals are small but the duality gap is large it
means that OSQP has returned a primal-dual pair that is (almost) feasible but is far
from optimal. On the other hand SCS v3.0, which terminates only when the gap as
well as the primal and dual residuals are below the tolerance, returns a solution after
3250 iterations with an objective value of 21.12, significantly closer to the true value.

Since the cone memberships are always guaranteed by the iterates, SCS v3.0
declares a problem infeasible when it finds y \in \BbbR m that satisfies

b\top y =  - 1, \| A\top y\| \infty < \epsilon infeas.

Similarly, SCS v3.0 declares dual infeasibility when it finds x \in \BbbR n, s \in \BbbR m that
satisfy

c\top x =  - 1, max(\| Px\| \infty , \| Ax+ s\| \infty ) < \epsilon infeas.

The other solvers have analogous certificates, and in these cases there is no duality gap
so the iterative procedure is not required. For the experiments we set \epsilon infeas = 10 - 4.

All three solvers rescale the data to yield better conditioning and they all im-
plement a heuristic ``step-size"" adaptation scheme. These heuristics were enabled
for these experiments; however, we note that the conclusions we derive from the ex-
periments did not change when these heuristics were disabled. On the contrary, the
advantage that the homogeneous embedding had over the direct approaches was more
pronounced in that case. We disabled more advanced techniques like acceleration, so-
lution polishing, and semidefinite cone decomposition. All three solvers were given
a maximum iteration limit of 105 and a time-limit of 103 seconds per problem. If a
solver fails to find a solution or a certificate of infeasibility satisfying the tolerances
within those limits, then it is considered to have failed to solve that problem. When
measuring average run-times any failures are assigned the maximum run-time of 103

seconds. All experiments were run single-threaded on a 2017 MacBook pro with a
3.1GHz Intel i7 and 16GB of RAM.

We present results on several datasets. First we present results on the Maros--
M\'esz\'aros dataset of challenging convex feasible QPs [44], then on the NETLIB dataset,
which contains both feasible and infeasible linear programs [27]. The SDPLIB dataset
also has four infeasible problems, on which we test SCS v3.0 and COSMO [8] (OSQP
does not support the semidefinite cone). Finally, we present results on randomly
generated quadratic problems as in the previous section. To summarize the results
for each dataset we shall use Dolan--Mor\'e performance profiles [19]. In these plots each
point of the curve corresponds to what fraction of the problems are solved (y-axis)
within a factor (x-axis) of the fastest solver for each problem. Curves of faster solvers
appear above those of slower solvers. When summarizing wall-clock performance we
shall use the shifted geometric means of the run-times with a shift of 10 seconds,
denoted sgm10.

In Figure 3 we show the Dolan--Mor\'e profile for the Maros--M\'esz\'aros QP dataset
and in Table 2 we present the failure rates. SCS v3.0 is the most robust solver, with
around a third of the failures of the next best solver. In terms of solve speeds SCS
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Fig. 3. Performance profiles for Maros--M\'esz\'aros problems.

Table 2
Solver failure rates on Maros--M\'esz\'aros problems.

SCS-3.0 OSQP COSMO

5.80\% 18.12\% 16.67\%
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Fig. 4. Performance profiles for NETLIB LP problems.

v3.0 was the fastest, followed by COSMO, which was about 2.6\times slower, and then
OSQP, which was about 2.8\times slower, as measured by sgm10.

In Figure 4 we show the profiles for the NETLIB dataset, broken down into
feasible and infeasible problems. In this case it is clear that SCS v3.0 is the fastest
solver. This is partially explained by the fact that SCS v3.0 appears to be far more
robust for these problems with a significantly lower overall failure rate, as shown in
Tables 3 and 4. For the feasible problems SCS v3.0 was about 16\times faster than OSQP
and 20\times faster than COSMO as measured by sgm10. For the infeasible problems SCS
v3.0 was about 3.2\times faster than OSQP and 20\times faster than COSMO.

The results for all four infeasible SDPLIB problems are given in Table 5. Both SCS
v3.0 and COSMO successfully certified that these problems were infeasible (primal
or dual depending on the problem), but SCS v3.0 was able to certify infeasibility
significantly faster than COSMO, about 66\times faster in terms of sgm10. This difference
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Table 3
Solver failure rates on NETLIB infeasible problems.

SCS-3.0 OSQP COSMO

20.69 \% 37.93\% 75.86\%

Table 4
Solver failure rates on NETLIB feasible problems.

SCS-3.0 OSQP COSMO

12.90 \% 61.29\% 65.59\%

Table 5
Solver times on SDPLIB infeasible problems in seconds.

SCS-3.0 COSMO

infd1 0.0122 2.1776

infd2 0.0155 0.0321

infp1 0.0035 0.1154

infp2 0.0037 0.1119
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Fig. 5. Performance profiles for randomly generated QP problems.

is partially explained by the number of iterations required to generate a certificate.
COSMO required almost 10\times the number of iterations of SCS v3.0 to certify that
these problems were infeasible.

Finally, the results for the random QPs are presented in Figure 5. For feasible
random problems SCS v3.0 and OSQP have similar performance, with OSQP about
4\% faster than SCS v3.0 on average, and COSMO somewhat slower. All three solvers
solved all feasible instances. However, for the randomly generated infeasible and un-
bounded problems the difference is stark. For unbounded problems SCS v3.0 certified
every single problem correctly, OSQP had a 0.8\% failure rate, and COSMO had a
1.2\% failure rate. However, SCS v3.0 was about 32\times faster than OSQP and 41\times 
faster than COSMO, as measured by sgm10. For the infeasible problems again SCS
v3.0 was able to certify infeasibility on all problems and OSQP on all but one problem,
but COSMO was unable to certify infeasibility on even a single instance, hitting the
maximum iteration limit on every problem. Even when the infeasibility tolerances
were loosened COSMO still struggled. This explains the strange Dolan--Mor\'e profile
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for this problem set, where SCS v3.0 is barely visible at the top left and COSMO
barely visible in the bottom right. Even though OSQP and SCS v3.0 had similar
success rates, SCS v3.0 was able to certify infeasibility about 29\times faster as measured
by sgm10.

8. Conclusion. We applied Douglas--Rachford splitting to a homogeneous em-
bedding of the linear complementarity problem (LCP). This resulted in a simple
alternating procedure in which we solve a linear system and project onto a cone at
each iteration. Since the linear system does not change from one iteration to the
next we can factorize the matrix once and cache it for use thereafter. Our procedure
is able to return the solution to the LCP when one exists or a certificate of infeasi-
bility otherwise. Quadratic cone programs (QCPs) are an important special case of
LCPs and we discussed how to implement the procedure efficiently for QCPs in detail.
We concluded with some experiments demonstrating the advantage of our procedure
over competing approaches numerically, showing large speedups for infeasible prob-
lems without sacrificing performance on feasible problems. The algorithm has been
implemented in C and is available as an open-source QCP solver.
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