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Abstract In this paper we introduce a simple heuristic adaptive restart technique that
can dramatically improve the convergence rate of accelerated gradient schemes. The
analysis of the technique relies on the observation that these schemes exhibit two
modes of behavior depending on how much momentum is applied at each iteration.
In what we refer to as the ‘high momentum’ regime the iterates generated by an accel-
erated gradient scheme exhibit a periodic behavior, where the period is proportional
to the square root of the local condition number of the objective function. Separately,
it is known that the optimal restart interval is proportional to this same quantity. This
suggests a restart technique whereby we reset the momentum whenever we observe
periodic behavior. We provide a heuristic analysis that suggests that in many cases
adaptively restarting allows us to recover the optimal rate of convergence with no
prior knowledge of function parameters.
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Fig. 1 Convergence of Algorithm 1 with different estimates of q

1 Introduction

Accelerated gradient schemes were first proposed by Yurii Nesterov in 1983 [18].
He demonstrated a simple modification to gradient descent that could obtain prov-
ably optimal performance for the complexity class of first-order algorithms applied
to minimize smooth convex functions. The method, and its successors, are often re-
ferred to as ‘fast’, ‘accelerated’, or ‘optimal’ methods. In recent years there has been
a resurgence of interest in first-order optimization methods [1, 3, 14, 20, 24], driven
primarily by the need to solve very large problem instances unsuited to second-order
methods.

Accelerated gradient schemes can be thought of as momentum methods, in that the
step taken at each iteration depends on the previous iterations, where the momentum
grows from one iteration to the next. When we refer to restarting the algorithm we
mean starting the algorithm again, taking the current iteration as the new starting
point. This erases the memory of previous iterations and resets the momentum back
to zero.

Unlike gradient descent, accelerated methods are not guaranteed to be monotone
in the objective function value. A common observation when running an accelerated
method is the appearance of ripples or bumps in the trace of the objective value. These
are seemingly regular increases in the objective, see Fig. 1 for an example. In this
paper we demonstrate that this behavior can occur when the momentum has exceeded
a critical value (the optimal momentum value derived by Nesterov in [19]) and that
the period of these ripples is proportional to the square-root of the (local) condition
number of the function. Separately, we re-derive the previously known result that the
optimal restart interval is also proportional to the square root of the condition number.
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Combining these provides a justification for the use of a restart technique whereby
we restart whenever we observe this rippling behavior. The analysis also suggests that
if the function is locally well-conditioned we may be able to use restarting to obtain
a linear convergence rate inside the well-conditioned region.

Smooth Unconstrained Optimization We wish to minimize a smooth convex func-
tion [4] of a variable x ∈ Rn, i.e.,

minimize f (x) (1)

where f : Rn → R has a Lipschitz continuous gradient with constant L, i.e.,
∥∥∇f (x) − ∇f (y)

∥∥
2 ≤ L‖x − y‖2, ∀x, y ∈ Rn.

We shall denote by f ! the optimal value of the above optimization problem, if a
minimizer exists then we shall write it as x!. Further, a continuously differentiable
function f is said to be strongly convex with strong convexity parameter µ > 0 if

f (x) ≥ f (y) + ∇f (y)T(x − y) + (µ/2)‖x − y‖2
2, ∀x, y ∈ Rn.

The condition number of a smooth, strongly convex function is given by L/µ.

2 Accelerated Methods

Accelerated first-order methods to solve (1) were first developed by Nesterov [18],
this scheme is from [19]:

Algorithm 1 Accelerated scheme I

Require: x0 ∈ Rn, y0 = x0, θ0 = 1 and q ∈ [0,1]
1: for k = 0,1, . . . do
2: xk+1 = yk − tk∇f (yk)

3: θk+1 solves θ2
k+1 = (1 − θk+1)θ

2
k + qθk+1

4: βk+1 = θk(1 − θk)/(θ
2
k + θk+1)

5: yk+1 = xk+1 + βk+1(x
k+1 − xk)

6: end for

There are many variants of the above scheme, see, e.g., [1, 2, 14, 20, 24]. Note
that by setting q = 1 in the above scheme we recover gradient descent. For a smooth
convex function the above scheme converges for any tk ≤ 1/L; setting tk = 1/L and
q = 0 obtains a guaranteed convergence rate of

f
(
xk

)
− f ! ≤ 4L‖x0 − x!‖2

(k + 2)2 , (2)
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assuming a minimizer exists. If the function is also strongly convex with strong con-
vexity parameter µ, then a choice of q = µ/L (the reciprocal of the condition num-
ber) will achieve

f
(
xk

)
− f ! ≤ L

(
1 −

√
µ

L

)k∥∥x0 − x!
∥∥2

. (3)

This is often referred to as linear convergence. With this convergence rate we can
achieve an accuracy of ε in

O
(√

L

µ
log

1
ε

)
(4)

iterations.
In the case of a strongly convex function the following simpler scheme obtains the

same guaranteed rate of convergence [19]:

Algorithm 2 Accelerated scheme II

Require: x0 ∈ Rn, y0 = x0

1: for k = 0,1, . . . do
2: xk+1 = yk − (1/L)∇f (yk)

3: yk+1 = xk+1 + β!(xk+1 − xk)

4: end for

where we set

β! = 1 − √
µ/L

1 + √
µ/L

. (5)

Note that in Algorithm 1, using the optimal choice q = µ/L, we have βk ↑ β!. If βk

is interpreted as a momentum term then β! is the maximum amount of momentum
we should apply; when we have a value of β higher than β! we are in the ‘high
momentum’ regime. We shall return to this point later.

The convergence rates of Algorithms 1 and 2 are optimal in the sense of the lower
complexity bounds derived by Nemirovski and Yudin in [17]. However, this con-
vergence is only guaranteed when the function parameters µ and L are known in
advance.

2.1 Robustness

A natural question to ask is how robust are accelerated methods to errors in the esti-
mates of the Lipschitz constant L and strong convexity parameter µ? For the case of
an unknown Lipschitz constant we can estimate the optimal step-size by the use of
backtracking; see, e.g., [2, 3, 24]. Estimating the strong convexity parameter is much
more challenging.
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Fig. 2 Sequence trajectories under Algorithm 1 and with adaptive restart

Estimating the Strong Convexity Parameter In [20] Nesterov demonstrated a
method to bound µ, similar to the backtracking schemes to estimate L. His scheme
achieves a convergence rate quite a bit slower than Algorithm 1 when µ is known.
In practice, we often assume (or guess) that µ is zero, which corresponds to setting
q = 0 in Algorithm 1. Indeed many discussions of accelerated algorithms do not
even include a q term, e.g., the original algorithm in [18]. However, this choice can
dramatically slow down the convergence of the iterates. Figure 1 shows Algorithm 1
applied to minimize a positive definite quadratic function in n = 200 dimensions,
with the optimal choice of q being q! = µ/L = 4.1 × 10−5 (a condition number of
about 2.4 × 104), and step-size t = 1/L. Each trace is the progress of the algorithm
with a different choice of q (hence a different estimate of µ).

We observe that slightly over or underestimating the optimal value of q for the
function can have a severe detrimental effect on the rate of convergence of the al-
gorithm. We also note the clear difference in behavior between the cases where we
underestimate and where we overestimate q!; in the latter we observe monotonic
convergence but in the former we notice the appearance of regular ripples or bumps
in the traces.

Interpretation The optimal momentum depends on the condition number of the
function; specifically, higher momentum is required when the function has a higher
condition number. Underestimating the amount of momentum required leads to
slower convergence. However, we are more often in the other regime, that of overes-
timated momentum, because generally q = 0, in which case βk ↑ 1; this corresponds
to high momentum and rippling behavior, as we see in Fig. 1. This can be visually
understood in Fig. 2, which shows the trajectories of sequences generated by Algo-
rithm 1 minimizing a positive definite quadratic in two dimensions, under q = q!, the
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optimal choice of q , and q = 0. The high momentum causes the trajectory to over-
shoot the minimum and oscillate around it. This causes a rippling in the objective
function values along the trajectory. In the sequel we shall demonstrate that the pe-
riod of these ripples is proportional to the square root of the (local) condition number
of the function.

Lastly we mention that the condition number is a global parameter; the sequence
generated by an accelerated scheme may enter regions that are locally better con-
ditioned, say, near the optimum. In these cases the choice of q = q! is appropriate
outside of this region, but once we enter it we expect the rippling behavior associated
with high momentum to emerge, despite the optimal choice of q .

3 Restarting

3.1 Fixed Restart

For strongly convex functions an alternative to choosing the optimal value of q in
Algorithm 1 is to use restarting, [3, 11, 15, 16, 20]. One example of a fixed restart
scheme is as follows:

Algorithm 3 Fixed restarting

Require: x0 ∈ Rn, y0 = x0, θ0 = 1
1: for j = 0,1, . . . do
2: carry out Algorithm 1 with q = 0 for k steps
3: set x0 = xk , y0 = xk and θ0 = 1.
4: end for

We restart the algorithm every k iterations, taking as our starting point the last
point produced by the algorithm, and reset the momentum back to zero.

Optimal Fixed Restart Interval Fixed restart intervals have been examined and up-
per bounds on the optimal restart interval have been derived by several authors; see,
e.g., [16, §11.4], [11, 13, 20]. We re-derive an upper bound here.

If we restart every k iterations we have, at outer iteration j , inner loop iteration k

(just before a restart),

f
(
x(j+1,0)

)
− f ! = f

(
x(j,k)

)
− f ! ≤ 4L

∥∥x(j,0) − x!
∥∥/k2

≤
(
8L/µk2)(f

(
x(j,0)

)
− f !

)
,

where the first inequality is the convergence guarantee of Algorithm 1, and the second
comes from the strong convexity of f . So after jk steps we have

f
(
x(j,0)

)
− f ! ≤

(
8L/µk2)j (

f
(
x(0,0)

)
− f !

)
.
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We wish to minimize this quantity over j and k jointly, subject to having jk = c total
iterations. A simple calculation yields

k! = e
√

8L/µ. (6)

Using this as our restart interval we obtain an accuracy of ε in less than
O(

√
L/µ log(1/ε)) iterations, i.e., the optimal linear convergence rate as in (4).

The drawbacks in using fixed restarts are two-fold, firstly it depends on unknown
parameters L and µ, and secondly it is a conservative estimate based on global pa-
rameters and may be inappropriate in better conditioned regions.

3.2 Adaptive Restart

The above analysis suggests that an adaptive restart technique may be useful when
using Algorithm 1. In particular we want a scheme that makes some computationally
cheap observation and decides whether or not to restart based on that observation.
In this paper we suggest two schemes that perform well in practice and provide a
heuristic analysis that suggests improved convergence when these schemes are used.

• Function scheme: restart whenever

f
(
xk

)
> f

(
xk−1).

• Gradient scheme: restart whenever

∇f
(
yk−1)T(

xk − xk−1) > 0.

Empirically we observe that these two schemes perform similarly well. The gradient
scheme has two advantages over the function scheme. Firstly all quantities involved
in the gradient scheme are already calculated in accelerated schemes, so no extra
computation is required. Secondly near to the optimum the gradient scheme may be
more numerically stable, since ∇f (yk−1)Txk will tend to zero as we get close to
the optimum, whereas f (xk) will tend to f !, leading to possible cancellation errors
when evaluating f (xk) − f (xk−1).

We can give rough justifications for each scheme. The function scheme restarts at
the bottom of the troughs as in Fig. 1, thereby avoiding the wasted iterations where
we are moving away from the optimum. The gradient scheme restarts whenever the
momentum term and the negative gradient are making an obtuse angle. In other words
we restart when the momentum seems to be taking us in a bad direction, as measured
by the negative gradient at that point.

Figure 3 shows the effect of different restart intervals on minimizing a positive
definite quadratic function in n = 500 dimensions. In this particular case the upper
bound on the optimal restart interval is every 700 iterations. We note that when this
interval is used the convergence is better than when no restart is used, however, not as
good as using the optimal choice of q . We also note that restarting every 400 iterations
performs about as well as restarting every 700 iterations, suggesting that the optimal
restart interval is somewhat lower than 700. We have also plotted the performance
of the two adaptive restart schemes. The performance is on the same order as the
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Fig. 3 Comparison of fixed and adaptive restart intervals

algorithm with the optimal q and much better than using the fixed restart interval.
Figure 2 demonstrates the function restart scheme trajectories for a two dimensional
example, restarting resets the momentum and prevents the characteristic spiraling
behavior.

It should be noted that the conjugate gradient method [12, 21] outperforms fast
gradient schemes when minimizing a quadratic, both in theory and practice. See
[21, eq. 5.36] and compare with the convergence rate in (3). We use quadratics here
simply to illustrate the technique.

4 Analysis

In this section we consider applying an accelerated scheme to minimizing a positive
definite quadratic function. We shall see that once the momentum is larger than a
critical value we observe periodicity in the iterates. We use this periodicity to recover
linear convergence when using adaptive restarting. The analysis presented in this
section is similar in spirit to the analysis of the heavy ball method in [22, §3.2].

4.1 Minimizing a Quadratic

Consider minimizing a strongly convex quadratic. Without loss of generality we can
assume that f has the following form:

f (x) = (1/2)xTAx
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where A ∈ Rn×n is positive definite and symmetric. In this case x! = 0 and f ! = 0.
We have strong convexity parameter µ = λmin > 0 and L = λmax, where λmin and
λmax are the minimum and maximum eigenvalues of A, respectively.

4.2 The Algorithm as a Linear Dynamical System

We apply an accelerated scheme to minimize f with a fixed step-size t = 1/L. Given
quantities x0 and y0 = x0, Algorithm 1 is carried out as follows:

xk+1 = yk − (1/L)Ayk,

yk+1 = xk+1 + βk

(
xk+1 − xk

)
.

For the rest of the analysis we shall take βk to be constant and equal to some β for all
k. By making this approximation we can show that there are two regimes of behavior
for the system, depending on the value of β . Consider the eigenvector decomposition
of A = V ΛV T. Denote by wk = V Txk , vk = V Tyk . In this basis the update equations
can be written

wk+1 = vk − (1/L)Λvk,

vk+1 = wk+1 + β
(
wk+1 − wk

)
.

These are n independently evolving dynamical systems. The ith system evolves ac-
cording to

wk+1
i = vk

i − (λi/L)vk
i ,

vk+1
i = wk+1

i + β
(
wk+1

i − wk
i

)
,

where λi is the ith eigenvalue of A. Eliminating the sequence v
(k)
i from the above we

obtain the following recurrence relation for the evolution of wi :

wk+2
i = (1 + β)(1 − λi/L)wk+1

i − β(1 − λi/L)wk
i , k = 0,1, . . . ,

where w0
i is known and w1

i = w0
i (1 − λi/L), i.e., a gradient step from w0

i .
The update equation for vi is identical, differing only in the initial conditions,

vk+2
i = (1 + β)(1 − λi/L)vk+1

i − β(1 − λi/L)vk
i , k = 0,1, . . . ,

where v0
i = w0

i and v1
i = ((1 + β)(1 − λi/L) − β)v0

i .

4.3 Convergence Properties

The behavior of this system is determined by the characteristic polynomial of the
recurrence relation,

r2 − (1 + β)(1 − λi/L)r + β(1 − λi/L). (7)
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Let β!
i be the critical value of β for which this polynomial has repeated roots, i.e.,

β!
i := 1 − √

λi/L

1 + √
λi/L

.

If β ≤ β!
i then the polynomial (7) has two real roots, r1 and r2, and the system evolves

according to [8]

wk
i = c1r

k
1 + c2r

k
2 . (8)

When β = β!
i the roots coincide at the point r! = (1 + β)(1 − λi/L)/2 = (1 −√

λi/L); this corresponds to critical damping. We have the fastest monotone con-
vergence at rate ∝ (1 − √

λi/L)k . Note that if λi = µ then β!
i is the optimal choice

of β as given by (5) and the convergence rate is the optimal rate, as given by (3). This
occurs as typically the mode corresponding to the smallest eigenvalue dominates the
convergence of the entire system.

If β < β!
i we are in the low momentum regime, and we say the system is over-

damped. The convergence rate is dominated by the larger root, which is greater than
r!, i.e., the system exhibits slow monotone convergence.

If β > β!
i then the roots of the polynomial (7) are complex and we are in the high

momentum regime. The system is under-damped and exhibits periodicity. In that case
the characteristic solution is given by [8]

wk
i = ci

(
β(1 − λi/L)

)k/2(cos(kψi − δi )
)

where

ψi = cos−1((1 − λi/L)(1 + β)/2
√

β(1 − λi/L)
)

and δi and ci are constants that depend on the initial conditions; in particular for
β ≈ 1 we have δi ≈ 0 and we will ignore it. Similarly,

vk
i = ĉi

(
β(1 − λi/L)

)k/2(cos(kψi − δ̂i )
)

where δ̂i and ĉi are constants, and again δ̂i ≈ 0. For small θ we know that
cos−1(

√
1 − θ) ≈

√
θ , and therefore if λi . L, then

ψi ≈
√

λi/L.

In particular the frequency of oscillation for the mode corresponding to the smallest
eigenvalue µ is approximately given by ψµ ≈ √

µ/L.
To summarize, based on the value of β we observe the following behavior:

• β > β!
i : high momentum, under-damped.

• β < β!
i : low momentum, over-damped.

• β = β!
i : optimal momentum, critically damped.
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4.4 Observable Quantities

We do not observe the evolution of the modes, but we can observe the evolution of
the function value; which is given by

f
(
xk

)
=

n∑

i=1

(
wk

i

)2
λi

and if β > β! = (1 − √
µ/L)/(1 + √

µ/L) we are in the high momentum regime for
all modes and thus

f
(
xk

)
=

n∑

i=1

(
wk

i

)2
λi ≈

n∑

i=1

(
w0

i

)2
λiβ

k(1 − λi/L)k cos2(kψi ).

The function value will quickly be dominated by the smallest eigenvalue and we have

f
(
wk

)
≈

(
w0

µ

)2
µβk(1 − µ/L)k cos2(k

√
µ/L

)
, (9)

where we have replaced ψµ with
√

µ/L, and we are using the subscript µ to denote
those quantities corresponding to the smallest eigenvalue.

A similar analysis for the gradient restart scheme yields

∇f
(
yk

)T(
xk+1 − xk

)
≈ µvk

µ

(
wk+1

µ − wk
µ

)
∝ βk(1 − µ/L)k sin

(
2k

√
µ/L

)
. (10)

In other words observing the quantities in (9) or (10) we expect to see oscillations
at a frequency proportional to

√
µ/L, i.e., the frequency of oscillation is telling us

something about the condition number of the function.

4.5 Convergence with Adaptive Restart

Applying Algorithm 1 with q = 0 to minimize a quadratic starts with β0 = 0, i.e.,
the system starts in the low momentum, monotonic regime. Eventually βk becomes
larger than β! and we enter the high momentum, oscillatory regime. It takes about
(3/2)

√
L/µ iterations for βk to exceed β!. After that the system is under-damped

and the iterates obey (9) and (10). Under either adaptive restart scheme, (9) and (10)
indicate that we shall observe the restart condition after a further (π/2)

√
L/µ itera-

tions. We restart and the process begins again, with βk set back to zero. Thus under
either scheme we restart approximately every

k! = π + 3
2

√
L

µ

iterations (cf. the upper bound on optimal fixed restart interval (6)). Following a sim-
ilar calculation to Sect. 3.1, this restart interval guarantees us an accuracy of ε within
O(

√
L/µ log(1/ε)) iterations, i.e., we have recovered the optimal linear convergence

rate of (4) via adaptive restarting, with no prior knowledge of µ.
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4.6 Extension to Smooth Convex Minimization

If the function we are minimizing has a positive definite Hessian at the optimum, then
by Taylor’s theorem there is a region inside of which

f (x) ≈ f
(
x!

)
+

(
x − x!

)T∇2f
(
x!

)(
x − x!

)
,

and loosely speaking we are minimizing a quadratic. Once we are inside this region
we will observe behavior consistent with the analysis above, and we can exploit this
behavior to achieve fast convergence by using restarts. Note that the Hessian at the
optimum may have smallest eigenvalue λmin > µ, the global strong convexity param-
eter, and we may be able to achieve faster local convergence than (3) would suggest.
This result is similar in spirit to the restart method applied to the non-linear conjugate
gradient method, where it is desirable to restart the algorithm once it reaches a region
in which the function is well approximated by a quadratic [21, §5.2].

The effect of these restart schemes outside of the quadratic region is unclear. In
practice we observe that restarting based on one of the criteria described above is
almost always helpful, even far away from the optimum. However, we have observed
cases where restarting far from the optimum can slow down the early convergence
slightly, until the quadratic region is reached and the algorithm enters the rapid linear
convergence phase.

5 Numerical Examples

In this section we describe three further numerical examples that demonstrate the
improvement of accelerated algorithms under an adaptive restarting technique.

5.1 Log-Sum-Exp

Here we minimize a smooth convex function that is not strongly convex. Consider
the following optimization problem:

minimize ρ log

(
m∑

i=1

exp
((

aT
i x − bi

)
/ρ

)
)

where x ∈ Rn. The objective function is smooth, but not strongly convex, it grows lin-
early asymptotically. Thus, the optimal value of q in Algorithm 1 is zero. The quantity
ρ controls the smoothness of the function, as ρ → 0, f (x) → maxi=1,...,m(aT

i x −bi).
As it is smooth, we expect the region around the optimum to be well approximated
by a quadratic (assuming the optimum exists), and thus we expect to eventually enter
a region where our restart method will obtain linear convergence without any knowl-
edge of where this region is, the size of the region or the local function parameters
within this region. For smaller values of ρ the smoothness of the objective function
decreases and thus we expect to take more iterations before we enter the region of
linear convergence.
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Fig. 4 Minimizing a smooth but not strongly convex function

As a particular example we took n = 20 and m = 100; we generated the ai and bi

randomly. Figure 4 demonstrates the performance of four different schemes for four
different values of ρ. We selected the step-size for each case using the backtrack-
ing scheme described in [3, §5.3]. We note that both restart schemes perform well,
eventually beating both gradient descent and the accelerated scheme. Both the func-
tion and the gradient schemes eventually enter a region of fast linear convergence.
For large ρ we see that even gradient descent performs well: similar to the adaptive
restart scheme, it is able to automatically exploit the local strong convexity of the
quadratic region around the optimum, see [19, §1.2.3]. Notice also the appearance of
the periodic behavior in the trace of Algorithm 1.

5.2 Sparse Linear Regression

Consider the following optimization problem:

minimize (1/2)‖Ax − b‖2
2 + ρ‖x‖1, (11)

over x ∈ Rn, where A ∈ Rm×n and typically n / m. This is a widely studied problem
in the field of compressed sensing, see e.g., [5, 6, 10, 23]. Loosely speaking problem
(11) seeks a sparse vector with a small measurement error. The quantity ρ trades off
these two competing objectives. The iterative soft-threshold algorithm (ISTA) can be
used to solve (11) [7, 9]. ISTA relies on the soft-thresholding operator:

Tα(x) = sign(x)max
(
|x| − α,0

)
,
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where all the operations are applied element-wise. The ISTA algorithm, with constant
step-size t , is given by

Algorithm 4 ISTA

Require: x(0) ∈ Rn

1: for k = 0,1, . . . do
2: xk+1 = Tρt (x

k − tAT(Axk − b)).
3: end for

The convergence rate of ISTA is guaranteed to be at least O(1/k), making it anal-
ogous to gradient descent. The fast iterative soft thresholding algorithm (FISTA)
was developed in [2]; a similar algorithm was also developed by Nesterov in [20].
FISTA essentially applies acceleration to the ISTA algorithm; it is carried out as fol-
lows:

Algorithm 5 FISTA

Require: x(0) ∈ Rn, y0 = x0 and θ0 = 1
1: for k = 0,1, . . . do
2: xk+1 = Tρt (y

k − tAT(Ayk − b))

3: θk+1 = (1 +
√

1 + 4θ2
k )/2

4: βk+1 = (θk − 1)/θk+1
5: yk+1 = xk+1 + βk+1(x

k+1 − xk).
6: end for

For any choice of t ≤ 1/λmax(A
TA) FISTA obtains a convergence rate of at least

O(1/k2). The objective in problem (11) is non-smooth, so it does not fit the class of
problems we are considering in this paper. However, we are seeking a sparse solution
vector x!, and we note that once the non-zero basis of the solution has been identified
we are essentially minimizing a quadratic. Thus we expect that after a certain number
of iterations adaptive restarting may provide linear convergence.

In this setting the function restart scheme can be applied unchanged, and it does
not require an extra application of the matrix A, which is the costly operation in the
algorithm. However, in performing FISTA we do not evaluate a gradient so we use
the composite gradient mapping [20] for the gradient restart scheme, in which we
take

xk+1 = Tλt

(
yk − tAT(

Ayk − b
))

:= yk − tG
(
yk

)

to be a generalized gradient step, where G(yk) is a generalized gradient at yk . In this
case the gradient restart scheme amounts to restarting whenever

G
(
yk

)T(
xk+1 − xk

)
> 0, (12)
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Fig. 5 Adaptive restarting applied to the FISTA algorithm

or equivalently
(
yk − xk+1)T(

xk+1 − xk
)
> 0. (13)

We generated data for the numerical instances as follows. Firstly the entries of
A were sampled from a standard normal distribution. We then randomly generated
a sparse vector y with n entries, only s of which were non-zero. We then set b =
Ay + w, where the entries in w were IID sampled from N (0,0.1). This ensured that
the solution vector x! is approximately s-sparse. We chose ρ = 1 and the step-size
t = 1/λmax(A

TA). Figure 5 shows the dramatic speedup that adaptive restarting can
provide, for two different examples.

5.3 Quadratic Programming

Consider the following quadratic program:

minimize (1/2)xTQx + qTx

subject to a ≤ x ≤ b,
(14)

over x ∈ Rn, where Q ∈ Rn×n is positive definite and a, b ∈ Rn are fixed vectors.
The constraint inequalities are to be interpreted element-wise, and we assume that
a < b. We denote by ΠC (z) the projection of a point z onto the constraint set, which
amounts to thresholding the entries in z.

Projected gradient descent [19] can solve (14); it is carried out as follows:

xk+1 = ΠC
(
xk − t

(
Qxk + q

))
.

Projected gradient descent obtains a guaranteed convergence rate of O(1/k). Accel-
eration has been successfully applied to the projected gradient method, [2, 20]:
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Algorithm 6 Accelerated projected gradient

Require: x0 ∈ Rn, y0 = x0 and θ0 = 1
1: for k = 0,1, . . . do
2: xk+1 = ΠC (yk − t (Qyk + q))

3: θk+1 solves θ2
k+1 = (1 − θk+1)θ

2
k

4: βk+1 = θk(1 − θk)/(θ
2
k + θk+1)

5: yk+1 = xk+1 + βk+1(x
k+1 − xk)

6: end for

For any choice of t ≤ 1/λmax(Q) accelerated projected gradient schemes obtain a
convergence rate of at least O(1/k2).

The presence of constraints make this a non-smooth optimization problem, how-
ever, once the constraints that are active have been identified the problem reduces to
minimizing a quadratic on a subset of the variables, and we expect adaptive restarting
to increase the rate of convergence. As in the sparse regression example of Sect. 5.2
the function restart remains unchanged. For the gradient scheme we use the gradient
mapping [19, 2.2.3] as a generalized gradient, in which we take

xk+1 = ΠC
(
yk − t

(
Qyk + q

))
= yk − tG

(
yk

)

to be a generalized gradient step and G(yk) to be a generalized gradient at yk . This
amounts to restarting based on condition (12) or, equivalently, (13).

For a numerical instance, we took n = 500 and generated Q and q randomly;
Q had a condition number of 107. We took b to be the vector of all ones, and a to
be that of all negative ones. The step-size was set to t = 1/λmax(Q). The solution
to this problem had 70 active constraints. Figure 6 shows the performance of pro-
jected gradient descent, accelerated projected gradient descent, and the two restart
techniques.

6 Summary

In this paper we introduced a simple heuristic adaptive restart technique that can im-
prove the convergence performance of accelerated gradient schemes for smooth con-
vex optimization. We restart the algorithm whenever we observe a certain condition
on the objective function value or gradient. We provided a heuristic analysis to show
that we can recover the optimal linear rate of convergence in many cases, and near the
optimum of a smooth function we can potentially dramatically accelerate the rate of
convergence, even if the function is not globally strongly convex. We demonstrated
the performance of the scheme on some numerical examples.
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Fig. 6 Adaptive restarting applied to the accelerated projected gradient algorithm
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